Skip to main content
Log in

Effects of nonstoichiometry on thermoelectric properties of CoSi-based materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of Si-rich and Si-deficient materials with nominal composition CoSix (x = 1.05, 1.00, 0.95, 0.90) have been synthesized by arc melting and hot-pressing sintering. The effects of nonstoichiometry on the phase composition and thermoelectric properties were systematically investigated. All the materials are composed of main phase CoSi, while trace impurity phase Co2Si or CoSi2 was detected in the nonstoichiometric materials. Transport measurements revealed that the Seebeck coefficient was remarkably decreased and the electrical conductivity was increased due to the significant enhancement in carrier concentration, and the lattice thermal conductivity was almost unchanged. As a result, a serious reduction in ZT was found in the nonstoichiometric materials because of the deteriorated power factor. This work demonstrates that a slight deviation from stoichiometric composition in CoSi-based material would cause a seriously detrimental influence on thermoelectric performance due to the dramatical decrease in Seebeck coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)

    Article  CAS  Google Scholar 

  2. M.I. Fedorov, V.K. Zaitsev, Thermoelectrics of transition metal silicides, in Thermoelectrics handbook macro to nano, ed. by D.M. Rowe (CRC Press, Boca Raton, 2006), pp. 31–41

    Google Scholar 

  3. A.T. Burkov, Silicide thermoelectrics: materials for energy harvesting. Phys. Status Solidi A 215, 1800105 (2018)

    Article  Google Scholar 

  4. S.W. Kim, Y. Mishima, D.C. Choi, Effect of process conditions on the thermoelectric properties of CoSi. Intermetallics 10, 177–184 (2002)

    Article  CAS  Google Scholar 

  5. W.L. Ren, C.C. Li, L.T. Zhang, K. Ito, J.S. Wu, Effects of Ge and B substitution on thermoelectric properties of CoSi. J Alloys Compd 392, 50–54 (2005)

    Article  CAS  Google Scholar 

  6. C.C. Li, W.L. Ren, L.T. Zhang, Effects of Al doping on the thermoelectric performance of CoSi single crystal. J. Appl. Phys. 98, 063706 (2005)

    Article  Google Scholar 

  7. Y.K. Kuo, K.M. Sivakumar, S.J. Huang, C.S. Lue, Thermoelectric properties of the CoSi1-xGex alloys. J. Appl. Phys. 98, 123510 (2005)

    Article  Google Scholar 

  8. E. Skoug, C. Zhou, Y. Pei, D.T. Morelli, High thermoelectric power factor in alloys based on CoSi. Appl. Phys. Lett. 94, 022115 (2009)

    Article  Google Scholar 

  9. H. Sun, D.T. Morelli, M.J. Kirkham, H.M. Mever III, E. Lara-Curzio, The role of boron segregation in enhanced thermoelectric power factor of CoSi1-xBx alloys. J. Appl. Phys. 110, 123711 (2011)

    Article  Google Scholar 

  10. H. Sun, X. Lu, D.T. Morelli, Effects of Ni, Pd, and Pt substitutions on thermoelectric properties of CoSi alloys. J. Electron. Mater. 42, 1352–1357 (2013)

    Article  CAS  Google Scholar 

  11. M. Ioannou, E. Symeou, J. Giapintzakis, T. Kyratsi, Structural characterization and thermoelectric properties of hot-pressed CoSi nanocomposites. J. Electron. Mater. 43, 3824–3830 (2014)

    Article  CAS  Google Scholar 

  12. H. Sun, X. Lu, D.T. Morelli, Isovalent substitutes play in different ways: effects of isovalent substitution on the thermoelectric properties of CoSi0.98B0.02. J. Appl. Phys. 120, 035107 (2016)

    Article  Google Scholar 

  13. M. Longhin, M. Rizza, R. Viennois, P. Papet, Exploration of CoSi-based alloys promising for thermoelectricity. Intermetallics 88, 46–54 (2017)

    Article  CAS  Google Scholar 

  14. H. Sun, X. Lu, D.T. Morelli, Detrimental effect of powder processing on the thermoelectric properties of CoSi. J Mater Sci 52, 8293–8299 (2017)

    Article  CAS  Google Scholar 

  15. Y. Xia, J. Park, F. Zhou, V. Ozolinš, High thermoelectric power factor in intermetallic CoSi arising from energy filtering of electrons by phonon scattering. Phys. Rev. Applied 11, 024017 (2019)

    Article  CAS  Google Scholar 

  16. A.S. Antonov, S.V. Novikov, D.A. Pshenay-Severin, A.T. Burkov, Thermoelectric properties of cobalt monosilicide and its alloys. Semiconductors 53, 667–672 (2019)

    Article  CAS  Google Scholar 

  17. M.I. Fedorov, V.K. Zaitsev, Semimetals as materials for thermoelectric generators, in CRC Handbook of Thermoelectrics, ed. by D.M. Rowe (CRC Press, Boca Raton, 1995), p. 321

    Google Scholar 

  18. C.S. Lue, Y.-K. Kuo, C.L. Huang, W.J. Lai, Hole-doping effect on the thermoelectric properties and electronic structure of CoSi. Phys. Rev. B 69, 125111 (2004)

    Article  Google Scholar 

  19. H. Sun, X. Lu, D.T. Morelli, Detrimental effect of powder processing on the thermoelectric properties of CoSi. J. Mater. Sci. 52, 8293–8299 (2017)

    Article  CAS  Google Scholar 

  20. M. Longhin, R. Viennois, D. Ravot, J.-J. Robin, B. Villeroy, J.-B. Vaney, C. Candolfi, B. Lenoir, P. Papet, Nanostructured CoSi obtained by spark plasma sintering. J. Electron. Mater. 44, 1963–1966 (2015)

    Article  CAS  Google Scholar 

  21. T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak, Binary alloy phase diagrams, 2nd edn. (Materials Park, OH, ASM, 1990), p. 1235

    Google Scholar 

  22. A.E. Petrova, V.N. Krasnorussky, A.A. Shikov, W.M. Yuhasz, T.A. Lograsso, J.C. Lashley, S.M. Stishov, Elastic, thermodynamic, and electronic properties of MnSi, FeSi, and CoSi. Phys. Rev. B 82, 155124 (2010)

    Article  Google Scholar 

  23. S.M. Stishov, A.E. Petrova, V.A. Sidorov, V.N. Krasnorussky, D. Menzel, Self-doping effects in cobalt silicide CoSi: electrical, magnetic, elastic, and thermodynamic properties. Phy. Rev. B 86, 064433 (2012)

    Article  Google Scholar 

  24. C.-D. Lien, M. Finetti, M.-A. Nicolet, Electrical properties of thin Co2Si, CoSi, and CoSi2 layers grown on evaporated silicon. J. Electron. Mater. 13, 95–105 (1984)

    Article  CAS  Google Scholar 

  25. J. Bardeen, W. Shockley, Scattering of electrons in crystals in the presence of large electric fields. Phys. Rev 80, 69–71 (1950)

    Article  Google Scholar 

  26. C.L. Julian, Theory of heat conduction in rare-gas crystals. Phys. Rev 137, A128–A137 (1965)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Planning Program of Jiangxi Provincial Education Department (Grant No. GJJ180916), National Undergraduate Training Program for Innovation (Grant No. 201911843023), and National Nature Science Foundation of China (Grant Nos. 51461021, 51161009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Yu or Xingkai Duan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, J., Kuang, J., Long, J. et al. Effects of nonstoichiometry on thermoelectric properties of CoSi-based materials. J Mater Sci: Mater Electron 31, 2139–2144 (2020). https://doi.org/10.1007/s10854-019-02735-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02735-6

Navigation