Skip to main content
Log in

Organic resistive switching device based on cellulose-gelatine microcomposite fibers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work demonstrates the non-volatile resistive switching behavior of cellulose-gelatine microcomposite fibers (CGMFs). The CGMFs were synthesized using the electrospinning technique and used as a switching layer for a resistive memory device. The morphological study reveals that the switching layer was composed of good quality of microcomposite fibers and possesses cross-link like morphology. The functional groups present in the switching layer were confirmed by Fourier-transform infrared spectroscopy technique. The CGMFs based device shows the bipolar resistive switching effect and requires low SET (+ 1.33 V) and RESET (− 1.42 V) voltages for the operation. The charge-magnetic flux relation of the device was calculated and memristive device like properties were observed from the results. The charge driving capability of the device was found to be ~ 1.3 × 10−2 C, which is sufficient to get the good resistive switching property. The non-volatile resistive switching behavior of the CGMFs based device suggested that the device has good performance in terms of endurance (500 cycles) and retention (2000 s). The uniformity and reliability of the device were confirmed by statistical calculations (standard deviation and coefficient of variation). The conduction model fitting results suggested that the space charge limited current (SCLC) and Ohmic conduction mechanisms were responsible for device operation during the high resistance state (HRS) and low resistance state (LRS), respectively. A possible resistive switching mechanism is presented by considering the formation and rupture of Ag conductive filament under the influence of external voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Zhu, Y. Li, W. Shen, Z. Zhou, L. Liu, X. Zhang, Resistive random access memory and its applications in storage and nonvolatile logic. J. Semicond. 38(7), 071002 (2017)

    Google Scholar 

  2. E. Linn, R. Rosezin, S. Tappertzhofen, U. Böttger, R. Waser, Beyond von Neumann—logic operations in passive crossbar arrays alongside memory operations. Nanotechnology 23(30), 305205 (2012)

    CAS  Google Scholar 

  3. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80 (2008)

    CAS  Google Scholar 

  4. S.G. Hu, S.Y. Wu, W.W. Jia, Q. Yu, L.J. Deng, Y.Q. Fu, Y. Liu, T.P. Chen, Review of nanostructured resistive switching memristor and its applications. Nanosci. Nanotechnol. Lett. 6(9), 729–757 (2014)

    Google Scholar 

  5. K.K. Pawar, D.V. Desai, S.M. Bodake, H.S. Patil, S.M. More, A.S. Nimbalkar, S.S. Mali, C.K. Hong, S. Kim, P.S. Patil, T.D. Dongale, Highly reliable multilevel resistive switching in a nanoparticulated In2O3 thin-film memristive device. J. Phys. D Appl. Phys. 52(17), 175306 (2019)

    CAS  Google Scholar 

  6. Q. Xia, W. Robinett, M.W. Cumbie, N. Banerjee, T.J. Cardinali, J.J. Yang, W. Wu, X. Li, W.M. Tong, D.B. Strukov, G.S. Snider, Memristor − CMOS hybrid integrated circuits for reconfigurable logic. Nano Lett. 9(10), 3640–3645 (2009)

    CAS  Google Scholar 

  7. S.S. More, P.A. Patil, K.D. Kadam, H.S. Patil, S.L. Patil, A.V. Pawar, S.S. Kanapally, D.V. Desai, S.M. Bodake, R.K. Kamat, S. Kim, Resistive switching and synaptic properties modifications in gallium-doped zinc oxide memristive devices. Results Phys. 12, 1946–1955 (2019)

    Google Scholar 

  8. A.V. Pawar, S.S. Kanapally, K.D. Kadam, S.L. Patil, V.S. Dongle, S.A. Jadhav, S. Kim, T.D. Dongale, MemSens: a new detection method for heavy metals based on silver nanoparticle assisted memristive switching principle. J. Mater. Sci. 30(12), 11383–11394 (2019)

    CAS  Google Scholar 

  9. S. Patil, M. Chougale, T. Rane, S. Khot, A. Patil, O. Bagal, S. Jadhav, A. Sheikh, S. Kim, T. Dongale, Solution-processable ZnO thin film memristive device for resistive random access memory application. Electronics 7(12), 445 (2018)

    Google Scholar 

  10. Z. Zhou, H. Mao, X. Wang, T. Sun, Q. Chang, Y. Chen, F. Xiu, Z. Liu, J. Liu, W. Huang, Transient and flexible polymer memristors utilizing full-solution processed polymer nanocomposites. Nanoscale 10(31), 14824–14829 (2018)

    CAS  Google Scholar 

  11. S.T. Gurme, T.D. Dongale, S.N. Surwase, S.D. Kumbhar, G.M. More, V.L. Patil, P.S. Patil, R.K. Kamat, J.P. Jadhav, An organic bipolar resistive switching memory device based on natural melanin synthesized from aeromonas sp. SNS. Phys. Status Solidi (a) 215(24), 1800550 (2018)

    Google Scholar 

  12. K. Nagashima, H. Koga, U. Celano, F. Zhuge, M. Kanai, S. Rahong, G. Meng, Y. He, J. De Boeck, M. Jurczak, W. Vandervorst, Cellulose nanofiber paper as an ultra-flexible nonvolatile memory. Sci. Rep. 4, 5532 (2014)

    CAS  Google Scholar 

  13. J. Ge, S. Zhang, Z. Liu, Z. Xie, S. Pan, Flexible artificial nociceptor using a biopolymer-based forming-free memristor. Nanoscale 11(14), 6591–6601 (2019)

    CAS  Google Scholar 

  14. Z. Lv, Y. Zhou, S.T. Han, V.A.L. Roy, From biomaterial-based data storage to bio-inspired artificial synapse. Mater. Today 21(5), 537–552 (2018)

    CAS  Google Scholar 

  15. L. Mohammed, M.N. Ansari, G. Pua, M. Jawaid, M.S. Islam, A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 15 (2015)

    Google Scholar 

  16. A.P. Rananavare, S.J. Kadam, S.V. Prabhu, S.S. Chavan, P.V. Anbhule, T.D. Dongale, Organic non-volatile memory device based on cellulose fibers. Mater. Lett. 232, 99–102 (2018)

    CAS  Google Scholar 

  17. L. Li, H. Wang, M. Chen, S. Jiang, S. Jiang, X. Li, Q. Wang, Butylated hydroxyanisole encapsulated in gelatin fiber mats: volatile release kinetics, functional effectiveness and application to strawberry preservation. Food Chem. 269, 142–149 (2018)

    CAS  Google Scholar 

  18. S. Jiang, Y. Chen, G. Duan, C. Mei, A. Greiner, S. Agarwal, Electrospun nanofiber reinforced composites: a review. Polym. Chem. 9(20), 2685–2720 (2018)

    CAS  Google Scholar 

  19. J. Xue, J. Xie, W. Liu, Y. Xia, Electrospun nanofibers: new concepts, materials, and applications. Acc. Chem. Res. 50(8), 1976–1987 (2017)

    CAS  Google Scholar 

  20. N. Choktaweesap, K. Arayanarakul, D. Aht-Ong, C. Meechaisue, P. Supaphol, Electrospun gelatin fibers: effect of solvent system on morphology and fiber diameters. Polym. J. 39(6), 622 (2007)

    CAS  Google Scholar 

  21. P. Taepaiboon, U. Rungsardthong, P. Supaphol, Vitamin-loaded electrospun cellulose acetate nanofiber mats as transdermal and dermal therapeutic agents of vitamin A acid and vitamin E. Eur. J. Pharm. Biopharm. 67(2), 387–397 (2007)

    CAS  Google Scholar 

  22. E. Vatankhah, M.P. Prabhakaran, G. Jin, L.G. Mobarakeh, S. Ramakrishna, Development of nanofibrous cellulose acetate/gelatin skin substitutes for variety wound treatment applications. J. Biomater. Appl. 28(6), 909–921 (2014)

    Google Scholar 

  23. L. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Google Scholar 

  24. F. Gul, Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor. Ceram. Int. 44(10), 11417–11423 (2018)

    CAS  Google Scholar 

  25. A. Yesil, F. Gül, Y. Babacan, Emulator circuits and resistive switching parameters of memristor. Ed. Book: memristor and memristive neural networks. IntechOpen 1(1), 41–61 (2018)

    Google Scholar 

  26. D.J. Wouters, S. Menzel, J.A. Rupp, T. Hennen, R. Waser, On the universality of the I-V switching characteristics in non-volatile and volatile resistive switching oxides. Faraday Discuss. 213, 183–196 (2019)

    CAS  Google Scholar 

  27. M.J. Rozenberg, M.J. Sanchez, R. Weht, C. Acha, F. Gomez-Marlasca, P. Levy, Mechanism for bipolar resistive switching in transition-metal oxides. Phys. Rev. B 81(11), 115101 (2010)

    Google Scholar 

  28. G.U. Kamble, N.P. Shetake, S.D. Yadav, A.M. Teli, D.S. Patil, S.A. Pawar, M.M. Karanjkar, P.S. Patil, J.C. Shin, M.K. Orlowski, R.K. Kamat, T.D. Dongale, Coexistence of filamentary and homogeneous resistive switching with memristive and meminductive memory effects in Al/MnO2/SS thin film metal–insulator–metal device. Int. Nano Lett. 8(4), 263–275 (2018)

    Google Scholar 

  29. V.S. Dongle, A.A. Dongare, N.B. Mullani, P.S. Pawar, P.B. Patil, J. Heo, T.J. Park, T.D. Dongale, Development of self-rectifying ZnO thin film resistive switching memory device using successive ionic layer adsorption and reaction method. J. Mater. Sci. 29(21), 18733–18741 (2018)

    CAS  Google Scholar 

  30. M. Itoh, L.O. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 18(11), 3183–3206 (2008)

    Google Scholar 

  31. A.C. Khot, N.D. Desai, K.V. Khot, M.M. Salunkhe, M.A. Chougule, T.M. Bhave, R.K. Kamat, K.P. Musselman, T.D. Dongale, Bipolar resistive switching and memristive properties of hydrothermally synthesized TiO2 nanorod array: effect of growth temperature. Mater. Des. 151, 37–47 (2018)

    CAS  Google Scholar 

  32. N. Du, Y. Shuai, W. Luo, C. Mayr, R. Schüffny, O.G. Schmidt, H. Schmidt, Practical guide for validated memristance measurements. Rev. Sci. Instrum. 84(2), 023903 (2013)

    Google Scholar 

  33. Y. Shuai, N. Du, X. Ou, W. Luo, S. Zhou, O.G. Schmidt, H. Schmidt, Improved retention of nonvolatile bipolar BiFeO3 resistive memories validated by memristance measurements. Phys. Status Solidi C 10(4), 636–639 (2013)

    CAS  Google Scholar 

  34. F. Gul, H. Efeoglu, ZnO and ZnO1 − x based thin film memristors: the effects of oxygen deficiency and thickness in resistive switching behavior. Ceram. Int. 43(14), 10770–10775 (2017)

    CAS  Google Scholar 

  35. F. Gul, H. Efeoglu, Bipolar resistive switching and conduction mechanism of an Al/ZnO/Al-based memristor. Superlattices Microstruct. 101, 172–179 (2017)

    CAS  Google Scholar 

  36. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)

    CAS  Google Scholar 

  37. F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Eng., R 83, 1–59 (2014)

    Google Scholar 

  38. F. Gul, Addressing the sneak-path problem in crossbar RRAM devices using memristor-based one Schottky diode-one resistor array. Results Phys. 12, 1091–1096 (2019)

    Google Scholar 

  39. T.D. Dongale, K.P. Patil, P.K. Gaikwad, R.K. Kamat, Investigating conduction mechanism and frequency dependency of nanostructured memristor device. Mater. Sci. Semicond. Process. 38, 228–233 (2015)

    CAS  Google Scholar 

  40. B. Martín-García, D. Spirito, R. Krahne, I. Moreels, Solution-processed silver sulphide nanocrystal film for resistive switching memories. J. Mater. Chem. C 6(48), 13128–13135 (2018)

    Google Scholar 

  41. M.J. Song, K.H. Kwon, J.G. Park, Electro-forming and electro-breaking of nanoscale Ag filaments for conductive-bridging random-access memory cell using Ag-doped polymer-electrolyte between Pt electrodes. Sci. Rep. 7(1), 3065 (2017)

    Google Scholar 

  42. U. Celano, L. Goux, A. Belmonte, K. Opsomer, A. Franquet, A. Schulze, C. Detavernier, O. Richard, H. Bender, M. Jurczak, W. Vandervorst, Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. Nano Lett. 14(5), 2401–2406 (2014)

    CAS  Google Scholar 

  43. B. Cho, J.M. Yun, S. Song, Y. Ji, D.Y. Kim, T. Lee, Direct observation of Ag filamentary paths in organic resistive memory devices. Adv. Func. Mater. 21(20), 3976–3981 (2011)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. Mansingraj S. Nimbalkar for providing the SEM instrument to measure the cross-section SEM image. Authors would like to acknowledge the support from the project funded by DST-SERB, New Delhi (F.N.-EEQ/2016/000789) and Dr. Arvind Gulbake for providing FTIR instrument for characterization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tukaram D. Dongale or Arpita P. Tiwari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandane, P.T., Dongale, T.D., Patil, P.B. et al. Organic resistive switching device based on cellulose-gelatine microcomposite fibers. J Mater Sci: Mater Electron 30, 21288–21296 (2019). https://doi.org/10.1007/s10854-019-02503-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02503-6

Navigation