Skip to main content
Log in

Development of switching memory devices of cellulose fibers from lotus petioles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Natural cellulose fibers are polysaccharide-based biological materials derived from diverse sources such as bamboo stalks, lotus plants, and cotton fleece. Cellulose offers a multitude of advantageous characteristics, encompassing structural stability, substantial surface area, exceptional flexibility, and biodegradability. Furthermore, cellulose's structure, morphology, and properties will largely depend on the extraction process and subsequent processing stages. In this work, the shape and form of cellulose fibers extracted from lotus petioles were recorded under chemical treatment, including NaClO, H2SO4, and NaOH. After isolation, the crystallinity significantly increased from 44.7 to 71.78%, and the average fiber size reduced from 3.11 to 1.9 µm. This study uses cellulose fibers derived from lotus petioles as a dielectric medium in a planar configuration with silver electrodes in a resistive-switching memory device, namely the Ag/Cellulose/Ag/Si device. The bio-memristor exhibits hysteresis behavior and good durability qualities, indicating its potential for future advancements in electrical technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. M. Qin, C. Chen, B. Song, M. Shen, W. Cao, H. Yang, G. Zeng, J. Gong, J. Clean. Prod. 312, 127788 (2021)

    Google Scholar 

  2. S.I.T.N.M.N.S. Iqbal, T. Naz, M. Naseem, J. Qual. Assur. Agric. Sci. 9, 9–13 (2021)

    Google Scholar 

  3. R. Anitha, R. Maruthi, S. Sudha, Global Transit. Proc. 3, 100 (2022)

    Google Scholar 

  4. C. Cheng, R. Guo, L. Tan, J. Lan, S. Jiang, Z. Du, L. Zhao, Cellulose 26, 1811 (2019)

    CAS  Google Scholar 

  5. A. Isogai, J. Wood Sci. 59, 449 (2013)

    CAS  Google Scholar 

  6. N. Lavoine, I. Desloges, A. Dufresne, J. Bras, Carbohydr. Polym. 90, 735 (2012)

    CAS  PubMed  Google Scholar 

  7. K. Jedvert, T. Heinze, J. Polym. Eng. 37, 845 (2017)

    CAS  Google Scholar 

  8. J. Zhang, Y. Yu, P. Wang, C. Luo, X. Wu, Z. Sun, J. Wang, W. Da Hu, G. Shen, InfoMat 1, 85 (2019)

    ADS  CAS  Google Scholar 

  9. D. Zhao, Y. Zhu, W. Cheng, W. Chen, Y. Wu, H. Yu, Adv. Mater. 33, 2000619 (2021)

    CAS  Google Scholar 

  10. Z. Luo, X. Hu, X. Tian, C. Luo, H. Xu, Q. Li, Q. Li, J. Zhang, F. Qiao, X. Wu, V.E. Borisenko, J. Chu, Sensors (Switzerland) 19, 1250 (2019)

    ADS  CAS  Google Scholar 

  11. X. Tian, Z. Luo, T. Fan, J. Zhang, J. Chu, X. Wu, Front. Sens. 1, 600185 (2020)

    Google Scholar 

  12. H. Abunahla, R. Gadhafi, B. Mohammad, A. Alazzam, M. Kebe, M. Sanduleanu, Sci. Rep. 10, 13128 (2020)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. J.L. Sanchez-Salvador, C. Campano, A. Balea, Q. Tarrés, M. Delgado-Aguilar, P. Mutjé, A. Blanco, C. Negro, Int. J. Biol. Macromol. 205, 220 (2022)

    CAS  PubMed  Google Scholar 

  14. M. Khadraoui, R. Khiari, L. Bergaoui, E. Mauret, Ind. Crops Prod. 183, 114991 (2022)

    CAS  Google Scholar 

  15. C. Salas, T. Nypelö, C. Rodriguez-Abreu, C. Carrillo, O.J. Rojas, Curr. Opin. Colloid Interface Sci. 19, 383 (2014)

    CAS  Google Scholar 

  16. M. Nasir, R. Hashim, O. Sulaiman, M. Asim, Cellulose-Reinforced Nanofibre Composites (Elsevier, New York, 2017), pp.261–276

    Google Scholar 

  17. M. Nasir, R. Hashim, O. Sulaiman, M. Asim, Cellulose-Reinforced Nanofibre Composites: Production, Properties and Applications (Elsevier, New York, 2017), pp.261–276

    Google Scholar 

  18. A.D. French, M.S. Cintrón, Cellulose 20, 583 (2013)

    CAS  Google Scholar 

  19. Y. Pan, G. Han, Z. Mao, Y. Zhang, H. Duan, J. Huang, L. Qu, Carbohydr. Polym. 85, 188 (2011)

    CAS  Google Scholar 

  20. Y. Nakano, M. Yamaguchi, H. Endo, N.A. Rejab, M. Ohtani, Front. Plant Sci. 6, 288 (2015)

    PubMed  PubMed Central  Google Scholar 

  21. C. Chen, J. Luo, W. Qin, Z. Tong, Monatsh. Chem. 2014(145), 175–185 (2014)

    Google Scholar 

  22. A. Kumar, Y.S. Negi, V. Choudhary, N.K. Bhardwaj, J. Mater. Phys. Chem. 2, 1 (2020)

    Google Scholar 

  23. A. Khenblouche, D. Bechki, M. Gouamid, K. Charradi, L. Segni, M. Hadjadj, S. Boughali, Polimeros 29, 1 (2019)

    Google Scholar 

  24. M.A.F. Supian, K.N.M. Amin, S.S. Jamari, S. Mohamad, J. Environ. Chem. Eng. 8, 103024 (2020)

    CAS  Google Scholar 

  25. S.K. Abdel-Aal, A.S. Abdel-Rahman, W.M. Gamal, M. Abdel-Kader, H.S. Ayoub, A.F. El-Sherif, M.F. Kandeel, S. Bozhko, E.E. Yakimov, E.B. Yakimov, Acta Crystallogr. B 75, 880 (2019)

    ADS  CAS  Google Scholar 

  26. Y. Chen, Q. Wu, B. Huang, M. Huang, X. Ai, Isolation and characteristics of cellulose and nanocellulose from lotus leaf stalk agro-wastes. BioResources 10(1), 684–696 (2015)

    Google Scholar 

  27. M.F. Kandeel, S.K. Abdel-Aal, A.F. El-Sherif, H.S. Ayoub, A.S. Abdel-Rahman, IOP Conf. Ser. Mater. Sci. Eng. 610(1), 012063 (2019)

    CAS  Google Scholar 

  28. K.O. Reddy, C.U. Maheswari, M.S. Dhlamini, V.P. Kommula, Int. J. Polym. Anal. Charact. 21, 286 (2016)

    CAS  Google Scholar 

  29. J.X. Sun, X.F. Sun, H. Zhao, R.C. Sun, Polym. Degrad. Stab. 84, 331 (2004)

    CAS  Google Scholar 

  30. W. Chen, H. He, H. Zhu, M. Cheng, Y. Li, S. Wang, Polymers (Basel) 10, 592 (2018)

    PubMed  Google Scholar 

  31. C.P. Azubuike, A.O. Okhamafe, Int. J. Recycl. Org. Waste Agric. 1, 1 (2012)

    Google Scholar 

  32. A.D. French, Cellulose 21, 885 (2014)

    CAS  Google Scholar 

  33. M. Goswami, A.M. Das, Carbohydr. Polym. 195, 189 (2018)

    CAS  PubMed  Google Scholar 

  34. A.E.O.B. Sghaier, Y. Chaabouni, S. Msahli, F. Sakli, Ind. Crops Prod. 36, 257 (2012)

    Google Scholar 

  35. W.T. Wulandari, A. Rochliadi, I.M. Arcana, IOP. Conf. Ser. Mater. Sci. Eng. 146(1), 011001 (2016)

    Google Scholar 

  36. S. Vasu, A. Haslija, A. Bakar, K.C. Teh, W.T. Wulandari, A. Rochliadi, I.M. Arcana, IOP Conf. Ser. Mater. Sci. Eng. 107, 012045 (2016)

    Google Scholar 

  37. Y. Wang, H. Liu, X. Wang, L. Zhao, Nanoscale Res. Lett. 14, 1–9 (2019)

    ADS  Google Scholar 

  38. A.V. Fadeev, K.V. Rudenko, Russ. Microlectron. 50, 311 (2021)

    Google Scholar 

  39. B. Sun, M. Xiao, G. Zhou, Z. Ren, Y.N. Zhou, Y.A. Wu, Mater. Today Adv. 6, 100056 (2020)

    Google Scholar 

  40. O. Krestinskaya, A. Irmanova, A.P. James, Modeling and Optimization in Science and Technologies (Springer, New York, 2020), pp.13–40

    Google Scholar 

  41. R.J. Bessa, A. Trindade, V. Miranda, IEEE Trans. Ind. Inform. 11, 232 (2015)

    Google Scholar 

  42. X. Li, A. Lee, S.A. Razavi, H. Wu, K.L. Wang, MRS Bull. 43, 970 (2018)

    ADS  Google Scholar 

  43. R.K. Katiyar, Y. Sharma, D.G.B. Diestra, P. Misra, S. Kooriyattil, S.P. Pavunny, G. Morell, B.R. Weiner, J.F. Scott, R.S. Katiyar, AIP Adv. 5, 037109 (2015)

    ADS  Google Scholar 

  44. A. Kiazadeh, H.L. Gomes, A.M.R. Da Costa, J.A. Moreira, D.M. De Leeuw, S.C.J. Meskers, Thin Solid Films 522, 407–411 (2012)

    ADS  CAS  Google Scholar 

  45. S. Hu, H. Yang, M. Tang, H. Chen, Y. Yang, S. Zhou, X. Qiu, Adv. Electron. Mater. 6 (2020)

  46. S. Gao, C. Song, C. Chen, F. Zeng, F. Pan, Appl. Phys. Lett. 102, 141606 (2013)

    ADS  Google Scholar 

  47. C. He, Z. Shi, L. Zhang, W. Yang, R. Yang, D. Shi, G. Zhang, ACS Nano 6, 4214 (2012)

    CAS  PubMed  Google Scholar 

  48. G. Zhang, C. Xie, P. You, S. Li, Introduction to Organic Electronic Devices (Springer, Singapore, 2022), pp.261–281

    Google Scholar 

  49. D.W. Liu, Y. Zhang, X.Y. Li, Q. Xiao, W.J. Sun, X. Shao, H.L. Zhang, J. Mater. Chem. C 9, 6560 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of XRD, FTIR, TGA, and CHNS measurements from the INOMAR Center, VNU-HCM.

Funding

Hau Huu Ho Do was funded by the Master, PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), code VINIF.2022.ThS.030. This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under Grant Number 103.02-2021.86.

Author information

Authors and Affiliations

Authors

Contributions

Hau Huu Do Ho: Methodology, Investigation, Writing—original draft, and Funding acquisition, Ngoc Hong Nguyen: Methodology and Writing—original draft, Ngoc Bao Nguyen: Data Curation and Investigation, Vien Ky Le: Data Curation, Ngoc-Uyen Thai Nguyen: Validation, Tan Le Hoang Doan and Linh Ho Thuy Nguyen: Formal analysis, Truong Huu Nguyen: Validation, Ngoc Kim Pham: Conceptualization, Supervision, Writing – review and editing.

Corresponding author

Correspondence to Ngoc Kim Pham.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3175 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, H.H.D., Nguyen, N.H., Nguyen, N.B. et al. Development of switching memory devices of cellulose fibers from lotus petioles. J Mater Sci: Mater Electron 35, 387 (2024). https://doi.org/10.1007/s10854-024-12134-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12134-1

Navigation