Skip to main content
Log in

Structural, morphological and optical properties of Yb2Cu2O5 thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The Yb2Cu2O5 thin films have been fabricated by ultrasonic spray pyrolysis followed by a high temperature annealing process. The as-deposited and annealed films are analyzed by well-known tools such as x-ray diffraction (XRD) and scanning electron microscope (SEM). The crystal structure of the Yb2Cu2O thin films is orthorhombic and their crystal size is 35.9 nm. The SEM images show that the surface of the Yb2Cu2O thin films is porous as a consequence of the high temperature treatment. The optical properties of Yb2Cu2O5 firstly deposited in a thin film form is also investigated by means of UV–Vis measurements. From Tauc plot, the indirect band gap value of 1.079 ± 0.003 eV is reported for Yb2Cu2O thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Scarel, A. Svane, M. Fanciulli, Rare Earth Oxide Thin Film. 106, 1 (2006)

    Article  Google Scholar 

  2. M. Majumder, R.B. Choudhary, A.K. Thakur, C.S. Rout, G. Gupta, New J. Chem. 42, 5295 (2018)

    Article  CAS  Google Scholar 

  3. N. Fujimura, T. Ishida, T. Yoshimura, T. Ito, Appl. Phys. Lett. 69, 1011 (1996)

    Article  CAS  Google Scholar 

  4. S.W. Keller, V.A. Carlson, D. Sandford, F. Stenzel, A.M. Stacy, G.H. Kwei, M. Alario-Franco, J. Am. Chem. Soc. 116, 8070 (1994)

    Article  CAS  Google Scholar 

  5. A. Karabulut, Bull. Mater. Sci. 42, 5 (2019)

    Article  Google Scholar 

  6. A. Murasik, P. Fischer, H. Rundlöf, R. Tellgren, R. Troc, Mater. Sci. Forums 228–231, 895 (1996)

    Article  Google Scholar 

  7. J.L. Garcia-Munoz, J. Rodriguez-Carvajal, J. Solid State Chem. 115, 324 (1995)

    Article  CAS  Google Scholar 

  8. J.L. Garcia-Munoz, J. Rodriguez-Carvajal, X. Obradors, M. Vallet-Reg, J. González-Calbet, M. Parras, Phys. Rev. B 44, 4716 (1991)

    Article  CAS  Google Scholar 

  9. Y. Ikeuchi, H. Ohta, S. Okubo, M. Motokawa, N. Kitamura, J. Magn. Magn. Mater. 181, 765 (1998)

    Article  Google Scholar 

  10. Z.A. Kazei, N.P. Kolmakova, R.Z. Levitin, B.V. Mill, V.V. Moshchalkov, V.N. Orlov, V.V. Snegirev, J. Zoubkova, J. Magn. Magn. Mater. 86, 124 (1990)

    Article  CAS  Google Scholar 

  11. W. Yang, Q. Du, G. Chen, H. Du, S. Liu, C. Wang, J. Han, Y. Zhang, Y. Yang, and J. Yang, 2015 IEEE Magnetics Conference (IEEE, 2015), pp. 1–1

  12. B. Kocaman, N. Akdoğan, J. Magn. Magn. Mater. 456, 17 (2018)

    Article  CAS  Google Scholar 

  13. M. Gibert, P. Zubko, R. Scherwitzl, J. Íñiguez, J.M. Triscone, Nat. Mater. 11, 195 (2012)

    Article  CAS  Google Scholar 

  14. J.K. Kar, R. Stevens, C.R. Bowen, J. Alloys Compd. 455, 121 (2008)

    Article  CAS  Google Scholar 

  15. R. Pandey, S. Yuldashev, H.D. Nguyen, H.C. Jeon, T.W. Kang, Curr. Appl. Phys. 12, S56 (2012)

    Article  Google Scholar 

  16. J.H. Lee and B.O. Park, Mater. Sci. Eng. B 106, 242 (2004)

    Article  Google Scholar 

  17. M. Li, L. Zhao, L. Guo, Int. J. Hydrogen Energy 35, 7127 (2010)

    Article  CAS  Google Scholar 

  18. R.J. Lang, J. Acoust. Soc. Am. 34, 6 (1962)

    Article  Google Scholar 

  19. W.N. Wang, A. Purwanto, I.W. Lenggoro, K. Okuyama, H. Chang, H.D. Jang, Ind. Eng. Chem. Res. 47, 1650 (2008)

    Article  CAS  Google Scholar 

  20. Y. Xu, M. Yamazaki, and P. Villars, Jpn. J. Appl. Phys. 50, (2011)

  21. W.W. Wendlandt, J. Inorg. Nucl. Chem. 9, 136 (1959)

    Article  CAS  Google Scholar 

  22. J. Quan, J. Zhang, X. Qi, J. Li, N. Wang, Y. Zhu, Sci. Rep. 7, 14771 (2017)

    Article  Google Scholar 

  23. I. Jang, S. Kim, C. Kim, H. Yoon, T. Song, J. Power Sources 392, 123 (2018)

    Article  CAS  Google Scholar 

  24. D.M. Carballeda-Galicia, R. Castanedo-Pérez, O. Jiménez-Sandoval, S. Jiménez-Sandoval, G. Torres-Delgado, C.I. Zúñiga-Romero, Thin Solid Films 371, 105 (2000)

    Article  CAS  Google Scholar 

  25. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi 15, 627 (1966)

    Article  CAS  Google Scholar 

  26. E.A. Davis, N.F. Mott, Philos. Mag. 22, 0903 (1970)

    Article  CAS  Google Scholar 

  27. K. Persson, Materials Data on Yb2Cu2O5 (SG:33) by Materials Project (2014) https://materialsproject.org/materials/mp-20205/. Accessed 30 May 2019.

  28. J. Michel, J. Liu, L.C. Kimerling, Nat. Photonics 4, 527 (2010)

    Article  CAS  Google Scholar 

  29. A. Rogalski, K. Adamiec, and J. Rutkowski, Narrow-Gap Semiconductor Photodiodes (SPIE Press, Bellingham, 2000)

    Book  Google Scholar 

  30. E.U. Onyegam, J. Mantey, R.A. Rao, L. Mathew, M. Hilali, S. Saha, D. Jawarani, S. Smith, D.A. Ferrer, S.V. Sreenivasan, S.K. Banerjee, Conference Record IEEE Photovoltaic Specialists Conference (2011), pp. 000271–000273

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Durmuş Ali Aldemir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aldemir, D.A. Structural, morphological and optical properties of Yb2Cu2O5 thin films. J Mater Sci: Mater Electron 30, 19457–19462 (2019). https://doi.org/10.1007/s10854-019-02309-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02309-6

Navigation