Skip to main content
Log in

Structural, optical, and magnetic properties of Gd-doped In2O3 nanocrystalline powder

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The Gd-doped In2O3 nanocrystalline powder was synthesized via a solid-state reaction process, with varying gadolinium concentration, and is well-suited for spintronic applications. Detailed spectroscopy techniques were employed to investigate the structural, morphological, optical, and magnetic characteristics of nanocrystalline powder composed of In2O3 doped with Gd. The X-ray diffraction (XRD) analysis has confirmed the presence of the cubic bixbyite structure in Gd-doped In2O3 material, with the (2 2 2) plane and a lattice constant ranging from 10.06 to 10.18 Å. The samples exhibit crystallite sizes below 60 nm and maintain good crystallinity when the Gd content fluctuates. The energy band gap of Gd-doped In2O3 was determined using a UV–Vis spectrophotometer to be within the range of 2.89 and 2.96 eV. The emission spectrum was analyzed using photoluminescence spectral measurements with an excitation wavelength of 410 nm. Peaks in the spectrum were detected in the violet, green, and red regions. The magnetic hysteresis loop exhibited the presence of weak ferromagnetism in Gd-doped In2O3, while pure In2O3 is paramagnetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data that support the findings of this study are included in the article.

References

  1. C N Carvalho, G Lavareda and A Amaral J. Non-Cryst. Solids. 352 2315 (2006)

    Article  ADS  Google Scholar 

  2. A V Singh and R M Mehra J. Appl. Phys. 90 5661 (2001)

    Article  ADS  Google Scholar 

  3. J H Lee Sci. Eng. B 127 267 (2006)

    Article  Google Scholar 

  4. M Lemine, M Bououdina, A Alyamani, K Omri and K Ibnaouf Lett. 181 152 (2016)

    Google Scholar 

  5. G Peleckis, X L Wang, S X Dou, P Munroe and J Ding J. Appl. Phys. 103 07D113 (2008)

    Article  Google Scholar 

  6. K Nomura, H Ohta, A Takagi, T Kamiya, M Hirano and H Hosono Nature 432 488 (2004)

    Article  ADS  Google Scholar 

  7. Y An, S Wang and D Feng Surf. Sci. 276 535 (2013)

    Article  ADS  Google Scholar 

  8. S Ju, A Facchetti, Y Xuan, J Liu, F Ishikawa, P Ye and C Zhou B. Janes Nat. Nanotechnol. 2 378 (2007)

    Article  ADS  Google Scholar 

  9. Z Liu and J Xu Soc. Rev. 44 161 (2015)

    Article  Google Scholar 

  10. Y Sun and J A Rogers Adv. Mater. 19 1897 (2007)

    Article  Google Scholar 

  11. K Takei, T Takahashi, J C Ho, H Ko, A G Gillies and P W Leu Mater. 9 821 (2010)

    Google Scholar 

  12. Y-F Tian and S-J Hu Phys. B 22 088505 (2013)

    Google Scholar 

  13. Y An and Y Xing Chem. Chem. Phys. 18 13701 (2016)

    Article  Google Scholar 

  14. S Harinath Babu, N M Rao, S Kaleemulla, G Amarendra and C Krishnamoorthi Bull. Mater. Sci. 40 17 (2017)

    Article  Google Scholar 

  15. P F Xing, Y X Chen, S-S Yan and G L Liu J. Appl. Phys. 106 043909 (2009)

    Article  ADS  Google Scholar 

  16. X Li and C Xia J. Phys. Chem. Solids 68 1836 (2007)

    Article  ADS  Google Scholar 

  17. S Sonsupap J. Supercond. Nov. Magn. 29 1641 (2016)

    Article  Google Scholar 

  18. G Peleckis Phys. Lett. 89 022501 (2006)

    Google Scholar 

  19. A Gupta, H Cao, K Parekh and K V Rao J. Appl. Phys. 101 09N513 (2007)

    Article  Google Scholar 

  20. Y Liu, P Yang, W Wang, H Dong and J Lin CrystEngComm 12 3717 (2010)

    Article  Google Scholar 

  21. Y Xiao, Z-Y Gao, D-P Wu and Y Jiang Res. Chin. Univ. 27 919 (2011)

    Google Scholar 

  22. H Xiao and P Li J. Phys. Chem. C 113 21034 (2009)

    Article  Google Scholar 

  23. C-C Huang, T-Y Liu, C-H Su and Y-W Lo Mater. 20 3840 (2008)

    Google Scholar 

  24. D Balestrieri, Y Philipponneau and G Decroix J. Eur. Ceram. Soc. 18 1073 (1998)

    Article  Google Scholar 

  25. S Majeed and S Shivashankar J. Mater. Chem. B 2 5585 (2014)

    Article  Google Scholar 

  26. N Aggarwal, K Kaur, A Vasishth and N K Verma J. Mater. Sci.: Mater. Electron. 27 13006 (2016)

    Google Scholar 

  27. A A Dakhel and M El-Hilo J. Appl. Phys. 107 123905 (2010)

    Article  ADS  Google Scholar 

  28. X Ma Thin Solid Films 520 5752 (2012)

    Article  ADS  Google Scholar 

  29. Q Sun J. Nanopart. Res. 14 665 (2012)

    Article  ADS  Google Scholar 

  30. N K Sahoo, S Thakur, M Senthilkumar, D Bhattacharyya and N C Das Thin Solid Films 440 155 (2003)

    Article  ADS  Google Scholar 

  31. N L Michel Res. Express 2 076103 (2015)

    Article  Google Scholar 

  32. S Chauhan, M Kumar, S Chhoker, S C Katyal and V P S Awana J. Mater. Sci.: Mater. Electron. 24 5102 (2013)

    Google Scholar 

  33. R C Sahoo J. Appl. Phys. 124 103901 (2018)

    Article  ADS  Google Scholar 

  34. G Hosamani, B N Jagadale, J Manjanna, S M Shivaprasad, D K Shukla and J S Bhat J. Mater. Sci.: Mater. Electron. 31 10 7871 (2020)

    Google Scholar 

  35. W X Si, X M Pei and H S Jia Diamond and Abrasives Engineering 2 146 33 (2005)

    Google Scholar 

  36. J B Qiang, Y M Wang, D H Wang, M Kramer, P Thiel and C Dong J. Non-Cryst. Solids 334&335 223 (2004)

    Article  Google Scholar 

  37. X Zhao, L Huang, H Li, H Hu, X Hu, L Shi and D Zhang Appl. Catal. B: Environ. 183 269 (2016)

    Article  Google Scholar 

  38. Z K Heiba, M A Deyab, N M Farag, M B Mohamed, S I Ahmed, Electrochemical performance of nano CuCo2O4 and MnS solid solution J. Solgel. Sci. Technol. 103 (3) (2022)

  39. M Mishra, P Kuppusami, S Ramya, V Ganesan and A Singh Coat. Technol. 262 56 (2015)

    Article  Google Scholar 

  40. C Deepannita, S Kaleemulla, N Madhusudhana Rao and G Venugopal Rao J. Mater. Sci: Mater. Electron. 28 18977 (2017)

    Google Scholar 

  41. J Sivasankar, P Mallikarjana, M Rigana Begam, N Madhusudhana Rao, S Kaleemulla and J Subrahmanyam J. Mater. Sci. Mater. Electron. 27 3 2300 (2015)

    Article  Google Scholar 

  42. Y S Chauhan, C Hu, D D Lu, V Sriramkumar, S Khandelwal, J P Duarte, N Payvadosi and A Niknejad Academic Press 245 (2015)

  43. Y Li Mater. 15 58 (2003)

    Google Scholar 

  44. P K Sharma, R K Dutta, R J Choudhary and A C Pandey CrystEngComm 15 4438 (2013)

    Article  Google Scholar 

  45. K Wongsaprom, R Jareanboon and S Kingcha J. Supercond. Nov. Magnet. 30 1053 (2017)

    Article  Google Scholar 

  46. D Yang, Y An, S Wang, Z Wu and J Liu RSC Adv. 4 33680 (2014)

    Article  ADS  Google Scholar 

  47. T Thangeeswari J. Mater. Sci. Mater. Electron. 26 2436 (2015)

    Article  Google Scholar 

  48. R Manigandan, K Giribabu, R Suresh, L Vijayalakshmi, A Stephen and V Narayanan Mater. Res. Bull. 48 4210 (2013)

    Article  Google Scholar 

  49. M Ahmed, Y M Al-Hadeethi, A M Abdel-Daiem and E R Shaaban Mater. 16 2226 (2023)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express my gratitude to the VIT management for their provision of research facilities, which have greatly supported my work. The authors express their gratitude to Dr. Abdul Azeem, an Associate Professor in Physics at NIT Warangal, for the photoluminescence characterization facility. The authors express their gratitude to Dr. G A. Basheed, a Scientist at CSIR-NPL, New Delhi, for the VSM data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Rao.

Ethics declarations

Conflicts of interest

All the authors declare that no conflict of interest is present regarding this present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajesh Ch, L., Rao, N.M. & Chakravarthi, M.K. Structural, optical, and magnetic properties of Gd-doped In2O3 nanocrystalline powder. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03209-0

Keywords

Navigation