Skip to main content
Log in

Influence of Dy3+ and Cu substitution on the structural, electrical and dielectric properties of CoFe2O4 nanoferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, Dy3+ and Cu doped cobalt ferrites with general chemical formula Co0.8−xDyxCu0.2Fe2O4 (where x = 0.0, 0.1, 0.3 and 0.5) have been synthesized via sol–gel route. The cubic phase confirmation and chemical bonding were revealed using X-ray diffraction and Fourier transform infrared spectroscopy respectively. Thermal stability of as-prepared samples was checked by thermo-gravimetric and differential thermal analysis. The surface morphology was studied by scanning electron microscopy. Raman spectroscopy was used for further confirmation of the single-phase cubic spinel structure of the samples. The average crystallite size was found to decrease from 17.5 to 12.4 nm and the lattice constant was increased from 8.3564 to 8.3811 Å on incorporation of Dy3+ ions. The dc electrical resistivity in the temperature range of 303–393 K shows the semiconducting nature of the as-prepared samples. The activation energies for different samples were estimated from the Arrhenius plot and found to be in range of 0.25–0.30 eV. The dielectric constant (ε′), ac conductivity (σac) and dielectric loss (tanδ) have been analyzed in the frequency range of 42 Hz - 5 MHz at room temperature. All the dielectric parameters were found to decrease on adding Dy3+ ions. The variation of dielectric properties ε′, tanδ, and σac with frequency indicates the typical Maxwell–Wagner type dielectric behavior due to interfacial (space charge) polarization and the exchange of electrons among Fe2+ and Fe3+ ions. Electron paramagnetic resonance measurements of as-prepared ferrite nanoparticles show the weak super-exchange interactions which cause the large g-value and broadening of the resonance line as compared to the free electron g-value. The prepared ferrites have high dielectric permittivity and low loss making them promising materials for the applications in high frequency memory storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.L. Routray, D. Behera, J. Mater. Sci. Mater. Electron. 29, 14248 (2018)

    CAS  Google Scholar 

  2. M.M.N. Ansari, S. Khan, N. Ahmad, J. Magn. Magn. Mater. 465, 81 (2018)

    CAS  Google Scholar 

  3. H. Wu, G. Liu, X. Wang, J. Zhang, Y. Chen, J. Shi, H. Yang, H. Hu, S. Yang, Acta Biomater. 7, 3496 (2011)

    CAS  Google Scholar 

  4. A.V. Ramana Reddy, G. Ranga Mohan, D. Ravinder, B.S. Boyanov, J. Mater. Sci. 34, 3169 (1999)

    Google Scholar 

  5. G.S. Luo, W.P. Zhou, J.D. Li, Z.Y. Zhou, G.W. Jiang, W.S. Li, S.L. Tang, Y.W. Du, J. Mater. Sci. Mater. Electron. 28, 7259 (2017)

    CAS  Google Scholar 

  6. S.S. Kumbhar, M.A. Mahadik, V.S. Mohite, K.Y. Rajpure, J.H. Kim, A.V. Moholkar, C.H. Bhosale, J. Magn. Magn. Mater. 363, 114 (2014)

    CAS  Google Scholar 

  7. H. Zheng, W. Weng, G. Han, P. Du, J. Phys. Chem. C 117, 12966 (2013)

    CAS  Google Scholar 

  8. R.C. Kambale, N.R. Adhate, B.K. Chougule, Y.D. Kolekar, J. Alloys Compd. 491, 372 (2010)

    CAS  Google Scholar 

  9. H.M. Tahir Farid, I. Ahmad, K.A. Bhatti, I. Ali, S.M. Ramay, A. Mahmood, Ceram. Int. 43, 7253 (2017)

    CAS  Google Scholar 

  10. S. Supriya, S. Kumar, M. Kar, J. Appl. Phys. 120, 215106 (2016)

    Google Scholar 

  11. P.P. Naik, R.B. Tangsali, S.S. Meena, S.M. Yusuf, Mater. Chem. Phys. 191, 215 (2017)

    CAS  Google Scholar 

  12. X. Feng, Z. Xiangchun, L. Liangchao, L. Hui, J. Jing, J. Rare Earths 25, 232 (2007)

    Google Scholar 

  13. S.M. Kabbur, U.R. Ghodake, D.Y. Nadargi, R.C. Kambale, S.S. Suryavanshi, J. Magn. Magn. Mater. 451, 665 (2018)

    CAS  Google Scholar 

  14. Z. Karimi, Y. Mohammadifar, H. Shokrollahi, S. Khameneh, G. Youse, L. Karimi, J. Magn. Magn. Mater. 361, 150 (2014)

    CAS  Google Scholar 

  15. M.A. Ahmed, E. Ateia, L.M. Salah, A.A. El-Gamal, Mater. Chem. Phys. 92, 310 (2005)

    CAS  Google Scholar 

  16. K.K. Bharathi, G. Markandeyulu, C.V. Ramana, J. Phys. Chem. C 115, 554 (2011)

    CAS  Google Scholar 

  17. M.A. Ahmed, N. Okasha, M.M. El-Sayed, Ceram. Int. 33, 49 (2007)

    CAS  Google Scholar 

  18. S.E. Shirsath, R.H. Kadam, S.M. Patange, M.L. Mane, A. Ghasemi, A. Morisako, Appl. Phys. Lett. 100, 042407 (2012)

    Google Scholar 

  19. Y. Wang, X. Wu, W. Zhang, W. Chen, J. Magn. Magn. Mater. 398, 90 (2016)

    CAS  Google Scholar 

  20. R.C. Kambale, K.M. Song, Y.S. Koo, N. Hur, J. Appl. Phys. 110, 053910 (2011)

    Google Scholar 

  21. F. Cheng, C. Liao, J. Kuang, Z. Xu, C. Yan, L. Chen, H. Zhao, Z. Liu, J. Appl. Phys. 85, 2782 (1999)

    CAS  Google Scholar 

  22. G. Dascalu, G. Pompilian, B. Chazallon, V. Nica, O.F. Caltun, S. Gurlui, C. Focsa, Appl. Phys. A 110, 915 (2013)

    CAS  Google Scholar 

  23. V. Chaudhari, S.E. Shirsath, M.L. Mane, R.H. Kadam, S.B. Shelke, D.R. Mane, J. Alloys Compd. 549, 213 (2013)

    CAS  Google Scholar 

  24. C.A. Stergiou, G. Litsardakis, J. Alloys Compd. 509, 6609 (2011)

    CAS  Google Scholar 

  25. E. Rezlescu, N. Rezlescu, F. Tudorache, P.D. Popa, J. Magn. Magn. Mater. 272–276, 1821 (2004)

    Google Scholar 

  26. S. Phumying, S. Labuayai, E. Swatsitang, V. Amornkitbamrung, S. Maensiri, Mater. Res. Bull. 48, 2060 (2013)

    CAS  Google Scholar 

  27. J. Jing, L. Liangchao, X. Feng, J. Rare Earths 25, 79 (2007)

    Google Scholar 

  28. S.I. Hussein, A.S. Elkady, M.M. Rashad, A.G. Mostafa, R.M. Megahid, J. Magn. Magn. Mater. 379, 9 (2015)

    CAS  Google Scholar 

  29. C. Zhang, J. Shi, X. Yang, L. De, X. Wang, Mater. Chem. Phys. 123, 551 (2010)

    CAS  Google Scholar 

  30. R.B. Kamble, V. Varade, K.P. Ramesh, V. Prasad, AIP Adv. 5, 017119 (2015)

    Google Scholar 

  31. I. Haïk Dunn, S.E. Jacobo, P.G. Bercoff, J. Alloys Compd. 691, 130 (2017)

    Google Scholar 

  32. B.D. Cullity, Elements of X-Ray Diffraction (Wesley, London, 1978)

    Google Scholar 

  33. L. Guo, X. Shen, X. Meng, Y. Feng, J. Alloys Compd. 490, 301 (2010)

    CAS  Google Scholar 

  34. B.P. Jacob, S. Thankachan, S. Xavier, E.M. Mohammed, Phys. Scr. 84, 045702 (2011)

    Google Scholar 

  35. R.A. Pawar, S.M. Patange, A.R. Shitre, S.K. Gore, S.S. Jadhav, S.E. Shirsath, RSC Adv. 8, 25258 (2018)

    CAS  Google Scholar 

  36. R.R. Kanna, N. Lenin, K. Sakthipandi, A.S. Kumar, J. Magn. Magn. Mater. 453, 78 (2018)

    CAS  Google Scholar 

  37. A. Ahmed, T. Ali, M.N. Siddique, A. Ahmad, P. Tripathi, J. Appl. Phys. 122, 083906 (2017)

    Google Scholar 

  38. P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, C. Muthamizhchelvan, Mater. Res. Bull. 46, 2208 (2011)

    CAS  Google Scholar 

  39. A.S. Elkady, S.I. Hussein, M.M. Rashad, J. Magn. Magn. Mater. 385, 70 (2015)

    CAS  Google Scholar 

  40. R.S. Yadav, I. Kuřitka, J. Vilcakova, P. Urbánek, M. Machovsky, M. Masař, M. Holek, J. Phys. Chem. Solids 110, 87 (2017)

    CAS  Google Scholar 

  41. X. Wu, Z. Ding, W. Wang, N. Song, L. Li, Powder Technol. 295, 59 (2016)

    CAS  Google Scholar 

  42. Y. Qu, H. Yang, N. Yang, Y. Fan, H. Zhu, G. Zou, Mater. Lett. 60, 3548 (2006)

    CAS  Google Scholar 

  43. P. Chandramohan, M.P. Srinivasan, S. Velmurugan, S.V. Narasimhan, J. Solid State Chem. 184, 89 (2011)

    CAS  Google Scholar 

  44. R. Nongjai, S. Khan, K. Asokan, H. Ahmed, I. Khan, J. Appl. Phys. 112, 084321 (2012)

    Google Scholar 

  45. H. Kumar, R.C. Srivastava, J. Pal Singh, P. Negi, H.M. Agrawal, D. Das, K. Hwa Chae, J. Magn. Magn. Mater. 401, 16 (2016)

    CAS  Google Scholar 

  46. E.J.W. Verwey, J.H. de Boer, Recl. Trav. Chim. Pays-Bas. 55, 531–540 (1936)

    CAS  Google Scholar 

  47. M.M.N. Ansari, S. Khan, N. Ahmad, Physica B 566, 86 (2019)

    CAS  Google Scholar 

  48. A.E. Danks, S.R. Hall, Z. Schnepp, Mater. Horiz. 3, 91 (2016)

    CAS  Google Scholar 

  49. P.C. Fannin, C.N. Marin, I. Malaescu, N. Stefu, P. Vlazan, S. Novaconi, P. Sfirloaga, S. Popescu, C. Couper, Mater. Des. 32, 1600 (2011)

    CAS  Google Scholar 

  50. D. Ravinder, K.V. Kumar, Bull. Mater. Sci. 24, 505 (2001)

    CAS  Google Scholar 

  51. N. Rezlescu, E. Rezlescu, Phys. Status Solidi 23, 575 (1974)

    CAS  Google Scholar 

  52. J.C. Maxwell, Electricity and Magnetism, vol. 1 (Oxford University Press, New York, 1973), p. 88

    Google Scholar 

  53. E. Frey, K. Kroy, Ann. Der Phys. 14, 20 (2005)

    CAS  Google Scholar 

  54. C.G. Koops, Phys. Rev. 83, 121 (1951)

    CAS  Google Scholar 

  55. L.I. Rabinkin, Z.I. Novikova, Ferrites Minsk, p. 146 (1960) (in Russian)

  56. W.R. Agami, Physica B 534, 17 (2018)

    CAS  Google Scholar 

  57. M. Hashim, M. Raghasudha, S.S. Meena, J. Shah, S.E. Shirsath, S. Kumar, D. Ravinder, P. Bhatt, A. Alimuddin, R. Kumar, R.K. Kotnala, J. Magn. Magn. Mater. 449, 319 (2018)

    CAS  Google Scholar 

  58. R. Ahmad, I.H. Gul, H. Anwar, M. Bilal, A. Khan, J. Magn. Magn. Mater. 405 (2015)

  59. S. Zahi, Mater. Des. 31, 1848 (2010)

    CAS  Google Scholar 

  60. M.M.N. Ansari, S. Khan, Physica B 520, 21 (2017)

    CAS  Google Scholar 

  61. A. Kumar, P.S. Rana, M. Yadav, R.P. Pant, Ceram. Int. 41, 1297 (2015)

    CAS  Google Scholar 

  62. K. Bhattacharjee, S.P. Pati, G.C. Das, D. Das, K.K. Chattopadhyay, J. Appl. Phys. 116, 233907 (2014)

    Google Scholar 

  63. M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Powder Technol. 212, 80 (2011)

    CAS  Google Scholar 

  64. M.K. Anupama, N. Srinatha, S. Matteppanavar, B. Angadi, B. Sahoo, B. Rudraswamy, Ceram. Int. 44, 4946 (2017)

    Google Scholar 

  65. R.P. Pant, M. Arora, B. Kaur, V. Kumar, A. Kumar, J. Magn. Magn. Mater. 322, 3688 (2010)

    CAS  Google Scholar 

  66. K.K. Bamzai, G. Kour, B. Kaur, M. Arora, R.P. Pant, J. Magn. Magn. Mater. 345, 255 (2013)

    CAS  Google Scholar 

  67. S.G. Kakade, Y.R. Ma, R.S. Devan, Y.D. Kolekar, C.V. Ramana, J. Phys. Chem. C 120, 5682 (2016)

    CAS  Google Scholar 

  68. S. Joshi, M. Kumar, S. Chhoker, A. Kumar, M. Singh, J. Magn. Magn. Mater. 426, 252 (2017)

    CAS  Google Scholar 

  69. C. Murugesan, G. Chandrasekaran, RSC Adv. 5, 73714 (2015)

    CAS  Google Scholar 

  70. S.G. Kakade, R.C. Kambale, Y.D. Kolekar, C.V. Ramana, J. Phys. Chem. Solids 98, 20 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

Mr. Mohd Mohsin Nizam Ansari gratefully acknowledges the University Grant Commission (UGC) New Delhi, India for providing financial support in the form of Non-NET Fellowship. Authors are grateful to Mr. Mohammad Monish, Department of Physics, Indian Institute of Technology Bombay, for characterizing the samples through Raman.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakeel Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ansari, M.M.N., Khan, S. & Ahmad, N. Influence of Dy3+ and Cu substitution on the structural, electrical and dielectric properties of CoFe2O4 nanoferrites. J Mater Sci: Mater Electron 30, 17630–17642 (2019). https://doi.org/10.1007/s10854-019-02112-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02112-3

Navigation