Skip to main content

Advertisement

Log in

Nickel hydroxide and lignocelluloses fibers based flexible paper electrodes for energy storage applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Unconventional and alternative resources are proved incredibly useful for flexible and bendable energy storage devices to meet the demand of modern disposable and bendable technology. Nickle hydroxide [Ni(OH)2] based composites are considered as high-performance electrodes for supercapacitor and batteries applications due to high specific capacitance at higher scan rates. This study presents the fabrication Ni(OH)2 and incorporation of lignocelluloses(LC) fibers as binders to address the inherent rigid structure. Furthermore, electrically conductive properties are address by synthesis of composites with Polypyrrole and Polyaninline. X-Ray diffraction (XRD) results confirm the successful formation of nickel hydroxide whereas scanning microscopy results (SEM) reveal the nanoparticle morphology. Incorporation of LC fibers within Ni(OH)2 particles presented as compact and flexible composite paper electrodes which can be cut with help of scissor in any shape for bulk use. Fourier Transform Infrared (FTIR) confirmed the composite formation and cyclic voltammetry (CV) measurements were performed for all the fabricated samples to observe the electrochemical kinetics by which the best specific capacitance is shown by Ni(OH)2/PPy/LC i.e. 630 Fg−1. These fabricated composites can be used further as flexible electrodes in energy storage applications because of enhanced electrochemical properties. Presented flexible Ni(OH)2 based paper sheets will be highly feasible for modern bendable and disposable energy storage devices due to light-weight and environmentally safe characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Parveen, M.H. Cho, Sci. Rep. 6, 27318 (2016)

    Article  Google Scholar 

  2. M.K. Motlagh, A.A. Youzbashi, F. Hashemzadeh, L. Sabaghzadeh, Powder Technol. 237, 562 (2013)

    Article  Google Scholar 

  3. U.M. Patil, K.V. Gurav, V.J. Fulari, C.D. Lokhande, O.S. Joo, J. Power Sources 188, 338 (2009)

    Article  Google Scholar 

  4. A. Andreev, P. Khristov, A. Losev, Appl. Catal. B 7, 225 (1996)

    Article  Google Scholar 

  5. Y.E. Roginskaya, O.V. Morozova, E.N. Lubnin, Y.E. Ulitina, G.V. Lopukhova, S. Trasatti, Langmuir 13, 4621 (1997)

    Article  Google Scholar 

  6. H. Wang, H.S. Casalongue, Y. Liang, H. Dai, J. Am. Chem. Soc. 132, 7472 (2010)

    Article  Google Scholar 

  7. Y. Liu, R. Wang, X. Yan, Sci. Rep. 5, 11095 (2015)

    Article  Google Scholar 

  8. D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. R. Soc. A 471, 20140792 (2015)

    Article  Google Scholar 

  9. J. Zhu, W. Zheng, B. He, J. Zhang, M. Anpo, J. Mol. Catal. A 216, 35 (2004)

    Article  Google Scholar 

  10. M. Yoshimura, H. Suda, K. Okamoto, K. Ioku, J. Mater. Sci. 29, 3399 (1994)

    Article  Google Scholar 

  11. M. Zhang, H. Fan, X. Ren, N. Zhao, H. Peng, C. Wang, X. Wu, G. Dong, C. Long, W. Wang, Y. Gao, J. Power Sources 418, 202 (2019)

    Article  Google Scholar 

  12. M. Zhang, H. Fan, N. Zhao, H. Peng, X. Ren, W. Wang, H. Li, G. Chen, Y. Zhu, X. Jiang, P. Wu, Chem. Eng. J. 347, 291 (2018)

    Article  Google Scholar 

  13. K. Matsui, T. Kyotani, A. Tomita, Adv. Mater. 14, 1216 (2002)

    Article  Google Scholar 

  14. W. Chen, J. Peng, L. Mai, H. Yu, Y. Qi, Chem. Lett. 33, 1366 (2004)

    Article  Google Scholar 

  15. L.L. Zhang, Z. Xiong, X.S. Zhao, J. Power Sources 222, 326 (2013)

    Article  Google Scholar 

  16. W. Jiang, D. Yu, Q. Zhang, K. Goh, L. Wei, Y. Yong, R. Jiang, J. Wei, Y. Chen, Adv. Funct. Mater. 25, 1063 (2015)

    Article  Google Scholar 

  17. D. Ghosh, S. Giri, M. Mandal, C.K. Das, RSC Adv. 4, 26094 (2014)

    Article  Google Scholar 

  18. J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237 (2013)

    Article  Google Scholar 

  19. X. Ren, H. Fan, J. Ma, C. Wang, M. Zhang, N. Zhao, App. Surf. Sci. 441, 194 (2018)

    Article  Google Scholar 

  20. M. Vidotti, C.D. Cerri, R.F. Carvalhal, J.C. Dias, R.K. Mendes, S.I.C. de Torresi, L.T. Kubota, J. Electroanal. Chem. 636, 18 (2009)

    Article  Google Scholar 

  21. M. Liang, M. Zhao, H. Wang, J. Shen, X. Song, J. Mater. Chem. A 6, 2482 (2018)

    Article  Google Scholar 

  22. S.J. Kim, M.K. Hong, J.K. Chung, S.Y. Park, J. Ceram. Process. Res. 13, 274 (2012)

    Google Scholar 

  23. L.T. Scarabelot, D. Muller, L.V. De Souza, D. Hotza, C.R. Rambo, J. Electron. Mater. 46, 5232 (2017)

    Article  Google Scholar 

  24. L. Ma, H. Fan, X. Wei, S. Chen, Q. Hu, Y. Liu, C. Zhi, W. Lu, J.A. Zapien, H. Huang, J. Mater. Chem. A 6, 19058 (2018)

    Article  Google Scholar 

  25. Z. Fan, H. Razavi, J.W. Do, A. Moriwaki, O. Ergen, Y.L. Chueh, P.W. Leu, J.C. Ho, T. Takahashi, L.A. Reichertz, S. Neale, Nat. Mater. 8, 648 (2009)

    Article  Google Scholar 

  26. Y. Song, T.Y. Liu, X.X. Xu, D.Y. Feng, Y. Li, X.X. Liu, Adv. Funct. Mater. 25, 4626 (2015)

    Article  Google Scholar 

  27. B. Yao, J. Zhang, T. Kou, Y. Song, T. Liu, Y. Li, Adv. Sci. 4, 201700107 (2017)

    Google Scholar 

  28. M.Y. Rafiq, F. Iqbal, F. Aslam, M. Bilal, N. Munir, I. Sultana, F. Ashraf, F. Manzoor, N. Hassan, A. Razaq, J. Alloys Compd. 729, 1072 (2017)

    Article  Google Scholar 

  29. T. Farid, A. Islam, A. Masood, F. Iqbal, M.Y. Rafique, A. Razaq, Ceram. Int. 44, 11397 (2018)

    Article  Google Scholar 

  30. M. Murthy, G.S. Nagarajan, J.W. Weidner, J.W. Van Zee, J. Electrochem. Soc. 143, 2319 (1996)

    Article  Google Scholar 

  31. J.Tientong, S. Garcia, C.R. Thurber, T.D. Golden, J. Nanotechnol. (2014). https://doi.org/10.1155/2014/193162

    Google Scholar 

  32. Z. Zhao, M. Moussa, G. Shi, Q. Meng, R. Wang, J. Ma, Compos. Sci. Technol. 127, 36 (2016)

    Article  Google Scholar 

  33. L. Jiang, J.A. Syed, Y. Gao, H. Lu, X. Meng, App. Surf. Sci. 440, 1011 (2018)

    Article  Google Scholar 

  34. M. Taibi, S. Ammar, N. Jouini, F. Fiévet, P. Molinié, M. Drillon, J. Mater. Chem. 12, 3238 (2002)

    Article  Google Scholar 

  35. A.K. Sharma, S. Desnavi, C. Dixit, U. Varshney, A. Sharma, Int. J. Chem. Eng. Appl. 6, 156 (2015)

    Google Scholar 

  36. R. Acharya, T. Subbaiah, S. Anand, R.P. Das, Mater. Lett. 57, 3089 (2003)

    Article  Google Scholar 

  37. M.S. Nazir, B.A. Wahjoedi, A.W. Yussof, M.A. Abdullah, BioResources 8, 2161 (2013)

    Article  Google Scholar 

  38. B.S. Singu, P. Srinivasan, S. Pabba, J. Electrochem. Soc. 159, A6 (2011)

    Article  Google Scholar 

  39. P. Gemeiner, J. Kuliček, M. Mikula, M. Hatala, Ľ. Švorc, L. Hlavatá, M. Mičušík, M. Omastová, Synth. Met. 210, 323 (2015)

    Article  Google Scholar 

  40. J.H. Park, O.O. Park, K.H. Shin, C.S. Jin, J.H. Kim, Electrochem. Solid State Lett. 5, H7 (2002)

    Article  Google Scholar 

  41. H. Jiang, C. Li, T. Sun, J. Ma, Chem. Commun. 48, 2606 (2012)

    Article  Google Scholar 

  42. F. Wolfart, D.P. Dubal, M. Vidotti, P. Gómez-Romero, RSC Adv. 6, 15062 (2016)

    Article  Google Scholar 

  43. Y. Wang, Y. Wang, L. Jiang, J. Appl. Electrochem. 48, 495 (2018)

    Article  Google Scholar 

  44. F. Liu, X. Chu, H. Zhang, B. Zhang, H. Su, L. Jin, W. Yang, Electrochim. Acta 269, 102 (2018)

    Article  Google Scholar 

  45. L.L. Zhang, H.H. Li, C.Y. Fan, K. Wang, X.L. Wu, H.Z. Sun, J.P. Zhang, J. Mater. Chem. A 3, 19077 (2015)

    Article  Google Scholar 

  46. S.H. Kazemi, K. Malae, J. Iran. Chem. Soc. 14, 419 (2017)

    Article  Google Scholar 

  47. Z. Zeng, P. Sun, J. Zhu, X. Zhu, Surf. Interfaces 8, 73 (2017)

    Article  Google Scholar 

  48. D. Ghosh, M. Mandal, C.K. Das, Langmuir 31, 7835 (2015)

    Article  Google Scholar 

  49. A.A. AbdelHamid, X. Yang, J. Yang, X. Chen, J.Y. Ying, Nano Energy 26, 425 (2016)

    Article  Google Scholar 

  50. M.F.Iqbal, A. Razaq, M.N. Ashiq, Y.V. Kaneti, A.A. Azhar, F. Yasmeen, K. Saleem Joya, S. Abbass, ChemElectroChem 5, 2636 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from NRPU grant no: 5334/Federal/NRPU/R&D/HEC/2016 awarded by Higher Education Commission (HEC), Pakistan are greatly acknowledged. The authors would also like to extend his sincere appreciation to the Deanship of Scientific Research at King Saud University for funding under Research Group (No. RG 1435-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Razaq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masood, A., Shoukat, Z., Rehman, A.R. et al. Nickel hydroxide and lignocelluloses fibers based flexible paper electrodes for energy storage applications. J Mater Sci: Mater Electron 30, 14772–14780 (2019). https://doi.org/10.1007/s10854-019-01850-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01850-8

Navigation