Skip to main content
Log in

Effect of discharge time on the size control of AgNPs prepared by non-thermal atmospheric plasma discharge

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, well-controlled and high stability colloidal silver nanoparticles (AgNPs) were attained via atmospheric-pressure plasma glow discharge in AgNO3 aqueous solution by controlling the discharge time. DC glow discharge with (6 kV) applied voltage and (1.8 mA) discharge current for discharge time (5, 10 and 15 min) was carried out in home–made cell at room temperature to prepare specific sizes and form of (AgNPs). Atmospheric pressure plasma between stainless steel capillary tube cathode electrode above the (AgNO3) electrolyte solution and platinum disk as an anode immersed in an (AgNO3) electrolyte solution for fast generation of colloidal nanoparticles. Structural properties of Ag NPs layer were examined via studying of field emission scanning electron microscope (FE-SEM) and X-ray diffraction (XRD) pattern. Optical properties of (AgNPs) were characterized by a UV–Vis beam spectrophotometer. The obtained results showed that (AgNPs) were uniformly distributed on the silicon substrate. Grain size and specific surface area of AgNPs intensely be influenced by the discharge time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alwan M. Alwan, Duaa A. Hashim, Muslim F. Jawad, Optimizing of porous silicon alloying process with bimetallic nanoparticles (Springer, Basel, 2018)

    Book  Google Scholar 

  2. Dapeng Chen, Xueliang Qiao, Jianguo Chen, Morphology-controlled synthesis of silver nanostructures via a solvothermal method. J. Mater. Sci.: Mater. Electron. 22, 1335–1339 (2011)

    CAS  Google Scholar 

  3. Hua Wang, Wenjia Xing, Jing Chen, Guixiang Liu, Xu Guangliang, Green synthesis of dendritic silver nanostructure and its application in conductive ink. J Mater Sci: Mater Electron 1, 1 (2016). https://doi.org/10.1007/s10854-016-6293-4

    Article  CAS  Google Scholar 

  4. A. Madu, P. Njoku, G. Iwuoha, U. Agbasi, Synthesis and characterization of gold nanoparticles using 1-alkyl, 3-methyl imidazolium based ionic liquids. Int. J. Phys. Sci. 6(4), 635–640 (2011)

    CAS  Google Scholar 

  5. P.P. Gan, S.H. Ng, Y. Huang, S.F. Li, Green synthesis of gold nanoparticles using palm oil mill effluent (POME): a low-cost and eco-friendly viable approach. Bioresour. Technol. 113, 132–135 (2012)

    Article  CAS  Google Scholar 

  6. V. Amendola, G.A. Rizzi, S. Polizzi, M. Meneghetti, Synthesis of gold nanoparticles by laser ablation in toluene: quenching and recovery of the surface plasmon absorption. J. Phys. Chem. B 109, 23125–23128 (2005)

    Article  CAS  Google Scholar 

  7. T. Zhang, Y.J. Song, X.Y. Zhang, J.Y. Wu, Synthesis of silver nanostructures by multistep methods. Sensors 14, 5860 (2014)

    Article  Google Scholar 

  8. F. Feng, G. Zhi, H.S. Jia, L. Cheng, Y.T. Tian, X.J. Li, SERS detection of low-concentration adenine by a patterned silver structure immersion plated on a silicon nanoporous pillar array. Nanotechnology 20, 295501 (2009)

    Article  Google Scholar 

  9. W. Xie, S. Schlücker, Rationally designed multifunctional plasmonic nanostructures for surface-enhanced Raman spectroscopy: a review. Rep. Prog. Phys. 77, 116502 (2014)

    Article  Google Scholar 

  10. Khaleel I. Hassoon, Ashok K. Sharma, Raad A. Khamis, Relativistic laser self-focusing in a plasma with transverse magnetic field. Phys. Scr. 81, 025505 (2010)

    Article  Google Scholar 

  11. A.M. Alwan, A.B. Dheyab, M.Q. Zayer, Optimizing of gold nanoparticles on porous silicon morphologies for a sensitive carbon monoxide gas sensor device. Plasmonics 14, 501 (2019)

    Article  Google Scholar 

  12. Ruixue Wang, Shasha Zuo, Weidong Zhu, Wu Shan, Weifeng Nian, Jue Zhang, Jing Fang, Microplasma-assisted growth of colloidal silver nanoparticles for enhanced antibacterial activity. Plasma Process. Polym. 11, 44–51 (2013)

    Article  CAS  Google Scholar 

  13. Liang Chen, Zhen Li, Chengjing Xiao, Zaiqin Wang, Wei Han, Size-controlled synthesis of highly dispersed silver particles. J. Mater. Sci.: Mater. Electron. 24, 1469–1474 (2013)

    CAS  Google Scholar 

  14. H. Furusho, K. Kitano, S. Hamaguchi, Y. Nagasaki, Preparation of stable water-dispersible PEGylated gold nanoparticles assisted by nonequilibrium atmospheric-pressure plasma jets. Chem. Mater. 21, 3526–3535 (2009)

    Article  CAS  Google Scholar 

  15. Caroline De Vos, Joffrey Baneton, Megan Witzke, Jean Dille, Stéphane Godet, Michael J. Gordon, R. Mohan Sankaran, François Reniers, A comparative study of the reduction of silver and gold salts in water by a cathodic microplasma electrode. J. Phys. D 50, 105206 (2017)

    Article  Google Scholar 

  16. Layla A. Wali, Alwan M. Alwan, Amer B. Dheyab, Duaa A. Hashim, Excellent fabrication of Pd–Ag NPs/PSi photocatalyst based on bimetallic nanoparticles for improving methylene blue photocatalytic degradation. Optik S0030–S4026(18), 31755–31758 (2018)

    Google Scholar 

  17. Layla A. Walia, Khulood K. Hasan, Alwan M. Alwan, Rapid and highly efficient detection of ultra-low concentration of penicillin G by gold nanoparticles/porous silicon SERS active substrate. Spectrochim. Acta A 206, 31–36 (2019)

    Article  Google Scholar 

  18. Q.Z. Mehdi, M. Alwan, Active control of silver nanostructure aggregates for ultrahigh sensitive SERS detection of organic molecules: single molecule approach. Int J Anoelectron Mater 12(1), 55–66 (2019)

    Google Scholar 

  19. Alwan M. Alwan, Intisar A. Naseef, Amer B. Dheyab, Well controlling of plasmonic features of gold nanoparticles on macro porous silicon substrate by HF acid concentration. Plasmonics 13, 2037–2045 (2018)

    Article  CAS  Google Scholar 

  20. X.Z. Huang, X.X. Zhong, Y. Lu, Y.S. Li, A.E. Rider, S.A. Furman, K. Ostrikov, Plasmonic Ag nanoparticles via environment-benign atmospheric microplasma electrochemistry. Nanotechnology 24, 095604 (2013)

    Article  CAS  Google Scholar 

  21. C. Richmonds, M. Witzke, B. Bartling, S. Whan Lee, J. Wainright, C. Liu, R. Mohan Sankaran, Electron-transfer reactions at the plasma_liquid interface. J. Am. Chem. Soc. 2011(133), 17582–17585 (2011)

    Article  Google Scholar 

  22. R. Akolkar, R.M. Sankaran, Charge transfer processes at the interface between plasmas and liquids. J. Vac. Sci. Technol. 31(5), 050811 (2013)

    Article  Google Scholar 

  23. D. Mariotti, R.M. Sankaran, Microplasmas for nanomaterials synthesis. J. Phys. D 43, 323001 (2010)

    Article  Google Scholar 

  24. R. d’Agostino, P. Favia, C. Oehr, M.R. Wertheimer, Low-temperature plasma processing of materials: past, present, and future. Plasma Process. Polym. 2, 7–15 (2005)

    Article  Google Scholar 

  25. T. Nozaki, K. Okazaki, Materials processing at atmospheric pressure: non-equilibrium effects on nanotechnology and mega industries. Pure Appl. Chem. 78, 1157–1172 (2006)

    Article  CAS  Google Scholar 

  26. M. Laroussi, X. Lu, Room-temperature atmospheric pressure plasma for biomedical applications. Appl. Phys. Lett. 87(11), 3902 (2005)

    Article  Google Scholar 

  27. D. Mariotti, R.M. Sankaran, Perspectives on atmospheric-pressure plasmas for nanofabrication. J. Phys. D 44, 174023 (2011)

    Article  Google Scholar 

  28. W. Chiang, C. Richmonds, R.M. Sankaran, Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase. Plasma Sources Sci. Technol. 19, 034011 (2010)

    Article  Google Scholar 

  29. J.W. Bradley, R.A. Khamis, Q.M.I. Sanduk, J.A. Elliott, M.G. Rusbridge, Measurements of the sheath potential in low density plasmas. J. Phys. D 25, 1443–1453 (1992)

    Article  CAS  Google Scholar 

  30. Heon Lee, Sung Hoon Park, Sang-Chul Junga, Preparation of nonaggregated silver nanoparticles by the liquid phase plasma reduction method. J. Mater. Res. 28(8), 1105–1110 (2013)

    Article  CAS  Google Scholar 

  31. L. Lin, Q. Wang, Microplasma: a new generation of technology for functional nanomaterial synthesis. Plasma Chem. Plasma Process. 35(6), 925–962 (2015)

    Article  CAS  Google Scholar 

  32. Adawyia J. Hayder, Alwan M. Alwan, Allaa A. Jabbar, Optimizing of porous silicon morphology for synthesis of silver Nanoparticles. Microporous Mesoporous Mater. 227, 152–160 (2016)

    Article  Google Scholar 

  33. Duaa A. Hashim, Alwan M. Alwan, Muslim F. Jawad, An investigation of structural properties of monometallic (Ag, Pd) and bimetallic (Ag@Pd) nanoparticles growth on macro porous silicon. Int. J. Nanoelectron. Mater. 11(4), 461–472 (2018)

    Google Scholar 

  34. Allaa A. Jabbar, Alwan M. Alwan, Adawiya J. Haider, Modifying and fine controlling of silver nanoparticle nucleation sites and SERS performance by double silicon etching process, plasmonics (Springer, New York, 2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alwan M. Alwan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, S.M., Alwan, A.M. & Khamis, R.A. Effect of discharge time on the size control of AgNPs prepared by non-thermal atmospheric plasma discharge. J Mater Sci: Mater Electron 30, 12630–12638 (2019). https://doi.org/10.1007/s10854-019-01624-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01624-2

Navigation