Skip to main content
Log in

Green synthesis of dendritic silver nanostructure and its application in conductive ink

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, dendritic silver nanostructure (DSN) was synthesized via a novel and eco-friendly method. The effects of the dosage of clove oil, concentration of silver nitrate and ultrasonic time on the formation of DSN were discussed. The structures of the obtained products were characterized by X-ray power diffraction, field emission scanning electron microscopy, transmission electron microscopy, and the chemical composition of DSN was examined by energy dispersive X-ray spectroscopy. The results show that the length of the trunks is approximately 2–5 μm and that of the lateral branches is about 0.5–2 μm. The conductive inks filled with dendritic silver and sphere silver powders were prepared respectively at mass fraction of 60%. The result shows that the coating of the conductive ink filled with dendritic silver has a lower sheet resistance of approximately 0.07 Ω/□ at a thickness of 20 μm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.H. Ji, Y. Liu, Y.Q. Li, H.M. Xiao, S.S. Du, J.Y. Zhang, N. Hu, S.Y. Fu, Significantly enhanced electrical conductivity of silver nanowire/polyurethane composites via graphene oxide as novel dispersant. Compos. Sci. Technol. 132, 57–67 (2016)

    Article  Google Scholar 

  2. D. Singha, N. Barman, K. Sahu, A facile synthesis of high optical quality silver nanoparticles by ascorbic acid reduction in reverse micelles at room temperature. J. Coll. Interface Sci. 413, 37–42 (2014)

    Article  Google Scholar 

  3. B. Hu, N. Wang, L. Han, M.L. Chen, J.H. Wang, Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria. Acta Biomater. 11, 511–519 (2015)

    Article  Google Scholar 

  4. W.G. Menezes, V. Zielasek, K. Thiel, A. Hartwig, M. Bäumer, Effects of particle size, composition, and support on catalytic activity of Au Ag nanoparticles prepared in reverse block copolymer micelles as nanoreactors. J. Catal. 299, 222–231 (2013)

    Article  Google Scholar 

  5. A. Rostami-Vartooni, M. Nasrollahzadeh, M. Salavati-Niasari, M. Ataro, Photocatalytic degradation of azo dyes by titanium dioxide supported silver nanoparticles prepared by a green method using Carpobrotus acinaciformis extract. J. Alloys Compds. 689, 15–20 (2016)

    Article  Google Scholar 

  6. M. Umadevi, M.R. Bindhu, V. Sathe, A novel synthesis of malic acid capped silver nanoparticles using solanum lycopersicums fruit extract. J. Mater. Sci. Technol. 29 (2013) 317–322.

    Article  Google Scholar 

  7. B. Moldovan, L. David, M. Achim, S. Clichici, G. A. Filip, A green approach to phytomediated synthesis of silver nanoparticles using Sambucus nigra L. fruits extract and their antioxidant activity, J. Mol. Liq. 221 (2016) 271–278.

    Article  Google Scholar 

  8. R. Yan-yu, Y. Hui, W. Tao, W. Chuang, Green synthesis and antimicrobial activity of monodisperse silver nanoparticles synthesized using Ginkgo Bilobaleaf extract. Phys. Lett. A 380, 3773–3777 (2016)

    Article  Google Scholar 

  9. C.F. Dong, X.L. Zhang, H. Cai, C.L. Cao, Green synthesis of biocompatible silver nanoparticlesmediated by Osmanthus fragrans extract in aqueous solution, Optik 127 (2016) 10378–10388.

    Article  Google Scholar 

  10. B. Mohapatra, S. Kuriakose, S. Mohapatra, Rapid green synthesis of silver nanoparticles and nanorods using piper nigrum extract. J. Alloys Compd. 637, 119–126 (2015)

    Article  Google Scholar 

  11. F. Tavakoli, M. Salavati-Niasari, F. Mohandes, Green synthesis of flower-like CuI microstructures composed of trigonal nanostructures using pomegranate juice. Mater. Lett. 100, 133–136 (2013)

    Article  Google Scholar 

  12. T. N. J. I. Edison, Y. R. Lee, M. G. Sethuraman, Green synthesis of silver nanoparticles using Terminalia cuneata and its catalytic action in reduction of direct yellow-12 dye, Spectrochim. Acta Part A 161 (2016) 122–129.

    Article  Google Scholar 

  13. X.K. Wang, L. Shao, W.L. Guo, J.G. Wang, Y.P. Zhu, C. Wang, Synthesis of dendritic silver nanostructures by means of ultrasonic irradiation. Ultrason. Sonochem. 16, 747–751 (2009)

    Article  Google Scholar 

  14. J.P. Xiao, Y. Xie, R. Tang, M. Chen, X.B. Tian, Novel ultrasonically assisted templated synthesis of palladium and silver dendritic nanostructures. Adv. Mater. 13, 1887–1891 (2001)

    Article  Google Scholar 

  15. G.D. Wei, C.W. Nan, Y. Deng, Y.H. Lin, Self-organized synthesis of silver chainlike and dendritic nanostructures via a solvothermal method. Chem. Mater. 15, 4436–4441 (2003)

    Article  Google Scholar 

  16. H.P. Ding, G.Q. Xin, K.C. Chen, M.L. Zhang, Q.Y. Liu, J.C. Hao, H.G. Liu, Silver dendritic nanostructures formed at the solid/liquid interfacevia electroless deposition. Coll. Surf. A 353, 166–171 (2010)

    Article  Google Scholar 

  17. M.V. Mandke, S.H. Hand, H.M. Pathan, Growth of silver dendritic nanostructures via electrochemical route, Crystengcomm 14 (2011) 86–89.

    Article  Google Scholar 

  18. L.H. Lu, A. Kobayashi, Y. Kikkawa, K. Tawa, Y. Ozaki, Oriented attachment—based assembly of dendritic silver nanostructures at room temperature. J. Phys. Chem. B 110, 23234–23241 (2006)

    Article  Google Scholar 

  19. X.Q. Wang, H. Itoh, K. Naka, Y. Chujo, Tetrathiafulvalene-assisted rormation of silver dendritic nanostructures in acetonitrile. Langmuir 19, 6242–6246 (2003)

    Article  Google Scholar 

  20. V.V. Agrawal, G.U. Kulkarni, C.N.R. Rao, Surfactant-promoted formation of fractal and dendritic nanostructures of gold and silver at the organic-aqueous interface. J. Colloid Interface Sci. 318, 501–506 (2008)

    Article  Google Scholar 

  21. J.X. Fang, H.J. You, C. Zhu, P. Kong, M. Shi, X.P. Song, B.J. Ding, Thermodynamic and kinetic competition in silver dendrite growth. Chem. Phys. Lett. 439, 204–208 (2007)

    Article  Google Scholar 

  22. M.H. Abdellatif, G.N. Abdelrasoul, A. Scarpellini, S. Marras, A. Diaspro, Induced growth of dendrite gold nanostructure by controlling self-assembly aggregation dynamics. J. Colloid Interface Sci. 458, 266–272 (2015)

    Article  Google Scholar 

  23. A. Jeevika, D.R. Shankaran, Seed-free synthesis of 1D silver nanowires ink using clove oil (Syzygium Aromaticum) at room temperature. J. Colloid Interface Sci. 458, 155–159 (2015)

    Article  Google Scholar 

  24. K. Sun, J. Qiu, J. Liu, Y. Miao, Preparation and characterization of gold nanoparticles using ascorbic acid as reducing agent in reverse micelles. J. Mater. Sci. 44, 754–758 (2009)

    Article  Google Scholar 

  25. K.P. Velikov, G.E. Zegers, A.V. Blaaderen, Synthesis and characterization of large colloidal silver particles. Langmuir 19, 1384–1389 (2003)

    Article  Google Scholar 

  26. N.T. Thanh, N. Maclean, S. Mahiddine, Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 114, 7610–7630 (2014)

    Article  Google Scholar 

  27. A. Ghosale, R. Shankar, V. Ganesand, K. Shrivasa, Direct-writing of paper based conductive track using silver nano-ink for electroanalytical application. Electrochim. Acta 209, 511–520 (2016)

    Article  Google Scholar 

  28. S.A. Odom, S. Chayanupatkul, B.J. Blaiszik, O. Zhao, A.C. Jackson, P.V. Braun, N.R. Sottos, S.R. White, J.S. Moore, A. self-healing conductive ink, Adv. Mater. 24, 2578–2258 (2012)

    Article  Google Scholar 

  29. W. Wu, S.L. Yang, S.F. Zhang, H.B. Zhang, C.Z. Jiang, Fabrication, characterization and screen printing of conductive ink based on carbon@Ag core–shell nanoparticles. J. Colloid Interface Sci. 427, 15–19 (2014)

    Article  Google Scholar 

  30. Y. Tang, W. He, S.X. Wang, Z.H. Tao, L.J. Cheng, One step synthesis of silver nanowires used in preparation of conductive silver paste. J. Mater. Sci.: Mater. Electron. 25, 2929–2933 (2014)

    Google Scholar 

  31. M.H. Rashid, T.K. Mandal, Synthesis and catalytic application of nanostructured silver dendrites. J. Phys. Chem. C 111, 16750–16760 (2007)

    Article  Google Scholar 

  32. F. Mohandes, M. Salavati-Niasari, Sonochemical synthesis of silver vanadium oxide micro/nanorods: solvent and surfactant effects. Ultrason. Sonochem. 20, 354–365 (2013)

    Article  Google Scholar 

  33. T. Witten, L. Sander, Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)

    Article  Google Scholar 

  34. T. Yang, Y.S. Han, J.H. Li, Manipulating silver dendritic structures via diffusion and reaction. Chem. Eng. Sci. 138, 457–464 (2015)

    Article  Google Scholar 

  35. T. Haxhimali, A. Karma, F. Gonzales, M. Rappaz, Orientation selection in dendritic evolution. Nat. Mater. 5, 660–664 (2006)

    Article  Google Scholar 

  36. Y.Q. Zheng, J. Zeng, A. Ruditskiy, M.C. Liu, Y.N. Xia, Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals. Chem. Mater. 26, 22–33 (2013)

    Article  Google Scholar 

  37. A. Mayoral, C. Magen, M. Joseyacaman, High yield production of long branched Au nanoparticles characterized by atomic resolution transmission electron microscopy. Cryst. Growth Des. 11, 4538–4543 (2011)

    Article  Google Scholar 

  38. X.G. Wen, Y.T. Xie, M.W.C. Mak, K.Y. Cheung, X.Y. Li, R. Renneberg, S. Yang, Dendritic nanostructures of silver: facile synthesis, structural characterizations, and sensing applications. Langmuir 22, 4836–4842 (2006)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by Enterprise Cooperation Project from Southwest University of Science and Technology (No. 15zh0176) and the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials (No. 15zx2101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangliang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Xing, W., Chen, J. et al. Green synthesis of dendritic silver nanostructure and its application in conductive ink. J Mater Sci: Mater Electron 28, 6152–6158 (2017). https://doi.org/10.1007/s10854-016-6293-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6293-4

Keywords

Navigation