Skip to main content
Log in

Strong magnetic properties and enhanced coupling effect by tailoring the molar ratio in BaTiO3/Co0.5Mg0.3Zn0.2Fe2O4 composite ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BTO/CMZFO composite ceramics with different molar ratios (the molar of BTO to that of CMZFO) (3:1, 2:1, 1:1, 1:2, 1:3) were prepared by conventional solid state reaction method. Effects of molar ratio on the dielectric, magnetic properties and coupling effect were investigated. The results indicate that the ceramics show bi-phase composite structure, without any obvious impurities can be found. The grain size can be categorized into two types, one is BTO with the grain size of 2–3 μm while the other one is CMZFO with the size less than 0.5 μm. The dielectric constant of all the composites is less than 500 in the frequency range from 20 to 2 MHz, and it decreases with decreasing the molar ratio while the dielectric loss shows the opposite behavior. The frequency stability of dielectric constant decreases with the addition of CMZFO due to the increased relaxation polarization. The dielectric constant and loss present non-monotonic dependence on the molar ratio, one or more relaxation peaks can be found. With the reduction of molar ratio, the height of the relaxation peak decreases and the position of the relaxation peak shifts to lower temperature. The remnant polarization (Pr) range is from 2 to 7.5 μC/cm2, it decreases first and then increases with the molar ratio, this non-monotonic transition can be attributed to the combined action of ferroelectric phase and leakage current. The magnetization decreases and then increases with the diminution of molar ratio, the largest remnant magnetization (Mr) of the composites is 31.52 emu/g when the ratio is 1:3. The largest effective magnetization of CMZFO component in the composite is 84.855 emu/g for the specimen with the molar ratio 2:1, which is due to the strongest interface interaction between the two phases compared with other samples. The coupling coefficient increases rapidly and then decreases slowly with the applied magnetic field, and the maximum coupling coefficient is near 1.2 mV/cmOe, which is obtained at about 2 kOe in the sample with the molar ratio 1:3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759–765 (2006)

    Article  Google Scholar 

  2. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1716–1719 (2003)

    Article  Google Scholar 

  3. H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh, S.-W. Cheong, Adv. Mater. 23, 3403–3407 (2011)

    Article  Google Scholar 

  4. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, H.R. Zhang, J.R. Sun, B.G. Shen, Sci. Rep. 6, 20330 (2016)

    Article  Google Scholar 

  5. T. Choi, S. Lee, Y. Choi, V. Kiryukhin, S. Cheong, Science 324, 63–66 (2009)

    Article  Google Scholar 

  6. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, X.L. Cao, Mater. Res. Bull. 84, 93–98 (2016)

    Article  Google Scholar 

  7. C. Renner, G. Aeppli, B.G. Kim, Y.A. Soh, S.W. Cheong, Nature 416, 518–521 (2002)

    Article  Google Scholar 

  8. T. Atou, H. Chiba, K. Ohoyam, Y. Yamaguchi, Y. Syono, J. Solid State Chem. 145, 639–642 (1999)

    Article  Google Scholar 

  9. Y.Z. Sun, F. Guo, J.Y. Chen, S.F. Zhao, Appl. Phys. Lett. 111, 253901 (2017)

    Article  Google Scholar 

  10. R. Nechache, C. Harnage, A. Pignolet, Appl. Phys. Lett. 89, 102902 (2006)

    Article  Google Scholar 

  11. R. Nechache, C. Harnagea, S. Licoccia, E. Traversa, A. Ruediger, A. Pignolet, F. Rosei, Appl. Phys. Lett. 98, 202902 (2011)

    Article  Google Scholar 

  12. S. Ju, G.Y. Guo, Appl. Phys. Lett. 92, 202504 (2008)

    Article  Google Scholar 

  13. T. Woldu, B. Raneesh, B.K. Hazra, J. Alloys Compd. 691, 644–652 (2017)

    Article  Google Scholar 

  14. T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M.P. Cruz, Y.H. Chu, C. Ederer, N.A. Spaldin, R.R. Das, D.M. Kim, S.H. Baek, C.B. Eom, R. Ramesh, Nat. Mater. 5, 823–829 (2006)

    Article  Google Scholar 

  15. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L.M. Ardabili, T. Zhao, L.S. Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, R. Ramesh, Science 303, 30–32 (2004)

    Article  Google Scholar 

  16. R.L. Gao, H.W. Yang, J.R. Sun, Y.G. Zhao, B.G. Shen, Appl. Phys. Lett. 104, 031906 (2014)

    Article  Google Scholar 

  17. G.S. Lotey, N.K. Verma, J. Mater. Sci.: Mater. Electron. 24, 3723–3729 (2013)

    Google Scholar 

  18. G.S. Lotey, N.K. Verma, Superlattice. Microstruct. 53, 184–194 (2013)

    Article  Google Scholar 

  19. R.L. Gao, C.L. Fu, W. Cai, G. Chen, X.L. Deng, X.L. Cao, Mater. Chem. Phys. 181, 277–283 (2016)

    Article  Google Scholar 

  20. G. Dhir, G.S. Lotey, P. Uniyal, N.K. Verma, J. Mater. Sci.: Mater. Electron. 24, 4386–4392 (2013)

    Google Scholar 

  21. G.S. Lotey, N.K. Verma, Chemi. Phys. Lett. 579, 78–84 (2013)

    Google Scholar 

  22. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, W. Cai, G. Chen, X.L. Deng, X.L. Cao, X.D. Luo, C.L. Fu, Nanoscale 10, 11750–11759 (2018)

    Article  Google Scholar 

  23. T. Woldu, B. Raneesh, B.K. Hazra, J. Alloys Compds. 691, 644–652 (2017)

    Article  Google Scholar 

  24. R.C. Xu, S.L. Zhang, F.Q. Wang, Q.W. Zhang, Z.D. Li, Z.H. Wang, R.L. Gao, C.L. Fu, J. Electron. Mater. 48, 386–400 (2019)

    Article  Google Scholar 

  25. Z.H. Tang, B. Yang, J.Y. Chen, Q.S. Lu, S.F. Zhao, J. Alloys Compd. 772, 298–305 (2019)

    Article  Google Scholar 

  26. R.C. Xu, Z.H. Wang, R.L. Gao, S.L. Zhang, Q.W. Zhang, Z.D. Li, C.Y. Li, G. Chen, X.L. Deng, W. Cai, C.L. Fu, J. Mater. Sci.: Mater. Electron. 29, 16226–16237 (2018)

    Google Scholar 

  27. S.S. Vadla, T. Costanzo, S. John, G. Caruntu, S.C. Roy, Scr. Mater. 159, 33–36 (2019)

    Article  Google Scholar 

  28. P. Zhou, K. Liang, Y. Liu, Z.Q. Zheng, T.J. Zhang, Appl. Phys. A 124, 670–675 (2018)

    Article  Google Scholar 

  29. H. Xu, M. Feng, M. Liu, X.D. Sun, L. Wang, L.Y. Jiang, X. Zhao, C.W. Nan, A.P. Wang, H.B. Li, Cryst. Growth Des. 18, 5934–5939 (2018)

    Article  Google Scholar 

  30. S.S. Hossain, P.K. Roy, J. Mater. Sci.: Mater. Electron. 28, 18136–18144 (2018)

    Google Scholar 

  31. A. Anju, S. Satapathy, M.M. Shirolkar, J. Li, A.A. Khan, P. Deshmukh, H.Q. Wang, R.J. Choudhary, A.K. Karnal, ACS Appl. Nano Mater. 1, 3196–3203 (2018)

    Article  Google Scholar 

  32. Y. Wang, G.J. Weng, J. Appl. Phys. 118, 174102 (2015)

    Article  Google Scholar 

  33. V.L. Mathe, A.D. Sheikh, Physica B 405, 3594–3598 (2010)

    Article  Google Scholar 

  34. A. Ghani, S. Yang, S.S. Rajput, S. Ahmed, A. Murtaza, C. Zhou, Y. Zhang, X.P. Song, X.B. Ren, J. Appl. Phys. 124, 154101 (2018)

    Article  Google Scholar 

  35. E. AlArfaj, S. Hcini, A. Mallah, M.H. Dhaou, M.L. Bouazizi, J. Super. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4694-8

    Google Scholar 

  36. Z.X. Yue, J. Zhou, X.H. Wang, Z.L. Gui, J. Mater. Sci. Lett. 20, 1327–1329 (2001)

    Article  Google Scholar 

  37. Z.X. Yue, J. Zhou, L.T. Li, X.H. Wang, Mater. Sci. Eng., B 86, 64–69 (2001)

    Article  Google Scholar 

  38. X. Qi, J. Zhou, Z.X. Yue, J. Magn. Magn. Mater. 251, 316–322 (2002)

    Article  Google Scholar 

  39. R.L. Gao, Q.M. Zhang, Z.Y. Xu, Z.H. Wang, G. Chen, X.L. Deng, C.L. Fu, W. Cai, Compos. Part. B 166, 204–212 (2019)

    Article  Google Scholar 

  40. R. Debnath, S.K. Mandal, A. Nath, P. Dey, Int. J. Mod. Phys. B 32, 1840060 (2018)

    Article  Google Scholar 

  41. R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, C.L. Fu, Ceram. Int. 44, S84–S87 (2018)

    Article  Google Scholar 

  42. Z. Dong, Y. Pu, Z. Gao, P. Wang, X. Liu, Z. Sun, J. Eur. Ceram. Soc. 35, 3513–3520 (2015)

    Article  Google Scholar 

  43. G. Tan, X. Chen, J. Magn. Magn. Mater. 327, 87–90 (2013)

    Article  Google Scholar 

  44. S. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, L.V. Panina, V. Turchenko, D. Chushkova, E.L. Trukhanova, O. Viktor, E.S. Yakovenko, L. Matzui, J. Magn. Magn. Mater. 442, 300–310 (2017)

    Article  Google Scholar 

  45. Q. Li, J. Li, X.M. Chen, S.N. Han, R.L. Gao, J. Exp. Nanosci. 3, 245–257 (2008)

    Article  Google Scholar 

Download references

Acknowledgement

This work has been supported by the Chongqing Research Program of Basic Research and Frontier Technology (CSTC2018jcyjAX0416, CSTC2016jcyjA0175, CSTC2016jcyjA0349), the Scientific and Technological Research Young Program of Chongqing Municipal Education Commission (KJQN201801509), the Excellent Talent Project in University of Chongqing (Grant No. 2017-35), the Science and Technology Innovation Project of Social Undertakings and Peoples Livelihood Guarantee of Chongqing (Grant No. cstc2017shmsA0192), the Program for Innovation Teams in University of Chongqing, China (Grant No. CXTDX201601032), the Leading Talents of Scientific and Technological Innovation in Chongqing (CSTCCXLJRC201919), the Program for Technical and Scientific Innovation Led by Academician of Chongqing, the Latter Foundation Project of Chongqing University of Science & Technology (CKHQZZ2008002), and the Scientific & Technological Achievements Foundation Project of Chongqing University of Science & Technology (CKKJCG2016328).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rongli Gao or Wei Cai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Gao, R., Zhang, Q. et al. Strong magnetic properties and enhanced coupling effect by tailoring the molar ratio in BaTiO3/Co0.5Mg0.3Zn0.2Fe2O4 composite ceramics. J Mater Sci: Mater Electron 30, 11563–11575 (2019). https://doi.org/10.1007/s10854-019-01513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01513-8

Navigation