Skip to main content
Log in

Effect of mass ratio on the dielectric and multiferroic properties of Co0.5Zn0.5FeCrO4/Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, Co0.5Zn0.5FeCrO4/Ba0.85Ca0.15Zr0.1Ti0.9O3 (CZFC/BCZT) composite ceramics with mass ratios (1:1, 3:1, 5:1, and 7:1) were prepared by solid-solution reaction method combined with sol–gel method. Effects of mass ratios on the microstructure, magnetic, dielectric, and ferroelectric properties were investigated. The CZFC and BCZT phase is verified without any secondary phases by XRD. SEM is used to distinguish the microstructure of CZFC / BCZT composite ceramics, which reveals the porous- and homogeneous structures of specimens. The permittivity of CZFC/BCZT ceramics is strongly dependent on its composition and decreases with the increase of CZFC content. Saturated polarization (Ps) and remnant polarization (Pr) of CZFC / BCZT composite ceramics gradually decline with increasing CZFC content from 1:1 to 5:1. The Ps and Pr values of CZFC / BCZT ceramics increase abnormally at 7:1 due to the larger leakage current caused by the pore. Magnetic properties, including Mr (remnant magnetization), and Ms (saturation magnetization), increase with the increase of CZFC content. The largest Mr (0.67 emu/g) and Ms (0.015 emu/g) are obtained at 7:1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Chem. Inf. 37, 759–769 (2010)

    Google Scholar 

  2. K.S. Patel, B. Kuriachen, N. Kumar et al., The slurry abrasive wear behaviour and microstructural analysis of A2024-SiC-ZrSiO4 metal matrix composite. Ceram. Int. 44, 6426–6432 (2018)

    Google Scholar 

  3. J.Y. Chen, Y.L. Bai, C.H. Nie et al., Strong magnetoelectric effect of Bi4Ti3O12/Bi5Ti3FeO15 composite films. J. Alloy. Compd. 663, 480–486 (2016)

    Google Scholar 

  4. N. Hur, S. Park, P.A. Sharma et al., Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

    ADS  Google Scholar 

  5. A.V. Trukhanov, V.G. Kostishyn, L.V. Panina et al., Magnetic properties and Mössbauer study of gallium doped M-type barium hexaferrites. Ceram. Int. 43, 12822–12827 (2017)

    Google Scholar 

  6. S.V. Trukhanov, A.V. Trukhanov, L.V. Panina et al., Temperature evolution of the structure parameters and exchange interactions in BaFe12-xInxO19. J. Magn. Magn. Mater. 466, 393–405 (2018)

    ADS  Google Scholar 

  7. C.W. Nan, M.I. Bichurin, S. Dong et al., Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008)

    ADS  Google Scholar 

  8. C. Ederer, Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401 (2004)

    Google Scholar 

  9. N. Kumar, A. Shukla, R.N.P. Choudhary et al., Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci. Mater. Electron. 28, 6673–6684 (2017)

    Google Scholar 

  10. J. Gao, D. Xue, Y. Wang et al., Microstructure basis for strong piezoelectricity in Pb-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics. Appl. Phys. Lett. 99, 92901 (2011)

    Google Scholar 

  11. N. Kumar, A. Shukla, N. Kumar et al., Structural, bulk permittivity and impedance spectra of electronic material: Bi(Fe0.5La0.5)O3. J. Mater. Sci. Mater. Electron. 30, 1919–1926 (2019)

    Google Scholar 

  12. S. Su, R. Zuo, S. Lu et al., Poling dependence and stability of piezoelectric properties of Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 ceramics with huge piezoelectric coefficients. Curr. Appl. Phys. 11, 120–123 (2011)

    Google Scholar 

  13. D. Xue, Y. Zhou, H. Bao et al., Piezoelectric, and dielectric properties of Ba(Zr0.2Ti0.8)O3–50(Ba0.7Ca0.3)TiO3 Pb-free ceramic at the morphotropic phase boundary. J. Appl. Phys. 109, 54110 (2011)

    Google Scholar 

  14. A.B. Haugen, J.S. Forrester, D.B. Damjanovic et al., Structure and phase transitions in 0.5(Ba0.7Ca0.3TiO3)–0.5(BaZr0.2Ti0.8O3) from − 100°C to 150°C. J. Appl. Phys. 113, 14103 (2013)

    Google Scholar 

  15. J.H. Gao, D.Z. Xue, W.F. Liu et al., Recent progress on BaTiO3-based piezoelectric ceramics for actuator applications. Actuators 6, 24–44 (2017)

    Google Scholar 

  16. M.S. Alkathy, K.C.J. Raju, Structural, dielectric, electromechanical, piezoelectric, elastic and ferroelectric properties of lanthanum and sodium co-substituted barium titanate ceramics. J. Alloy. Compd. 737, 464–476 (2018)

    Google Scholar 

  17. T.Y. Li, X.J. Lou, X.Q. Ke et al., Giant strain with low hysteresis in A-site-deficient (Bi0.5Na0.5)TiO3-based lead-free piezoceramics. Acta. Mater. 128, 337–344 (2017)

    Google Scholar 

  18. Y. Yin, C.L. Zhao, Y.X. Zhang et al., Ultrahigh strain in site engineering-independent Bi0.5Na0.5TiO3-based relaxor-ferroelectrics. Acta. Mater. 147, 70–77 (2018)

    Google Scholar 

  19. K. Wang, F.Z. Yao, J. Koruza et al., Electromechanical properties of CaZrO3 modified (K, Na)NbO3-based lead-free piezoceramics under uniaxial stress conditions. J. Am. Ceram. Soc. 100, 2116–2122 (2017)

    Google Scholar 

  20. P. Li, X.Q. Chen, F.F. Wang et al., Microscopic insight into electric fatigue resistance and thermally stable piezoelectric properties of (K, Na)NbO3-based ceramics. ACS. Appl. Mater. Inter. 10, 28772–28779 (2018)

    Google Scholar 

  21. M.M. Salem, L.V. Panina, E.L. Trukhanova et al., Structural, electric and magnetic properties of (BaFe11.9Al0.1O19)1–x(BaTiO3)x composites. Compos. B Eng. 174, 107054–107058 (2019)

    Google Scholar 

  22. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin et al., Coexistence of spontaneous polarization and magnetization in substituted M-type hexaferrites BaFe12-xAlxO19 (x≤12) at room temperature. J. Etp. Lett. 103, 100–105 (2016)

    ADS  Google Scholar 

  23. A.V. Trukhanov, S.V. Trukhanov, L.V. Panina et al., Evolution of structure and magnetic properties for BaFe11.9Al0.1O19 hexaferrite in a wide temperature range. J. Magn. Magn. Mater. 426, 487–496 (2017)

    ADS  Google Scholar 

  24. Q. Zhang, W. Cai, Q. Li et al., Enhanced piezoelectric response of (Ba, Ca) (Ti, Zr)O3 ceramics by super large grain size and construction of phase boundary. J. Alloy. Compd. 794, 542–552 (2019)

    Google Scholar 

  25. D. Xue, Y. Zhou, H. Bao et al., Large piezoelectric effect in Pb-free Ba(Ti, Sn)O3 x(Ba, Ca)TiO3 ceramics. Appl. Phys. Lett. 99, 051606 (2011)

    Google Scholar 

  26. P.N. Oliveira, D.M. Silva, G.S. Dias et al., Synthesis and physical property measurements of CoFe2O4: BaTiO3 core-shell composite nanoparticles. Ferroelectrics 499, 76–82 (2016)

    Google Scholar 

  27. M. Veverka, P. Veverka, Z. Jirák et al., Synthesis and magnetic properties of Co1− xZnxFe2O4 γ nanoparticles as materials for magnetic fluid hyperthermia. J Magn. Magn. Mater. 322, 2386–2389 (2010)

    ADS  Google Scholar 

  28. F. Gözüak, Y. Köseoğlu, A. Baykal et al., Synthesis and characterization of CoxZn1− xFe2O4 magnetic nanoparticles via a PEG-assisted route. J. Magn. Magn. Mater. 321, 2170–2177 (2009)

    ADS  Google Scholar 

  29. R. Xu, S. Zhang, F. Wang et al., The study of microstructure, dielectric and multiferroic properties of (1–x)Co0.8Cu0.2Fe2O4-xBa0.6Sr0.4TiO3 composites. J. Electron. Mater. 48, 386–400 (2019)

    ADS  Google Scholar 

  30. S.V. Trukhanov, A.V. Trukhanov, M.M. Salem et al., Preparation and investigation of structure, magnetic and dielectric properties of (BaFe11.9Al0.1O1.9)1-x-(BaTiO3)x bicomponent ceramics. Ceram. Int. 44, 21295–21302 (2018)

    Google Scholar 

  31. S.V. Trukhanov, Magnetic and magnetotransport properties of La1-xBaxMnO3-x/2 perovskite manganites. J. Mat. Chem. 13, 347–352 (2003)

    Google Scholar 

  32. V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, Self-doped lanthanum manganites as a phase-separated system: Transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression. J. Appl. Phys. 104, 093909 (2008)

    ADS  Google Scholar 

  33. H. Yang, W. Hong, H. Li et al., Polarization relaxation mechanism of Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 composite with giant dielectric constant and high permeability. J. Appl. Phys. 108, 2005 (2010)

    Google Scholar 

  34. R. Sharma, P. Pahuja, R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40, 9027–9036 (2014)

    Google Scholar 

  35. J. Liu, C.G. Duan, W.G. Yin et al., Large dielectric constant and maxwell-wagner relaxation in Bi2/3Cu3Ti4O12. Phys. Rev. B 70, 2806–2810 (2004)

    Google Scholar 

  36. Y. Sun, H. Liu, H. Hao et al., The role of Co in the BaTiO3–Na0.5Bi0.5TiO3 based X9R ceramics. Ceram. Int. 41, 931–939 (2015)

    Google Scholar 

  37. W. Cai, C. Fu, J. Gao et al., Effects of grain size on domain structure and ferroelectric properties of barium zirconate titanate ceramics. J. Alloy. Compd. 480, 870–873 (2009)

    Google Scholar 

  38. G. Chen, X.D. Peng, C.L. Fu et al., Microstructure, dielectric and ferroelectric properties of (1–x)BaTiO3-xBiYbO3 ceramics fabricated by conventional and microwave sintering methods. J. Mater. Sci-Mater. Electron. 29, 20017–20032 (2018)

    Google Scholar 

  39. W.Y. Xing, Y. Ma, Z. Ma et al., Improved ferroelectric and leakage current properties of Er-doped BiFeO3 thin films derived from structural transformation. Smart. Mater. Struct. 23, 085030 (2014)

    ADS  Google Scholar 

  40. S.V. Trukhanov, I.O. Troyanchuk, I.M. Fita et al., Comparative study of the magnetic and electrical properties of Pr1-xBaxMnO3-δ manganites depending on the preparation conditions. J. Magn. Magn. Mater. 237, 276–282 (2001)

    ADS  Google Scholar 

  41. S.V. Trukhanov, I.O. Troyanchuk, A.V. Trukhanov et al., Magnetic properties of La0.70Sr0.30MnO2.85 anion-deficient manganite under hydrostatic pressure. JETP. Lett. 83, 33–36 (2006)

    Google Scholar 

  42. S.V. Trukhanov, Investigation of stability of ordered manganites. JETP 101, 513–520 (2005)

    ADS  Google Scholar 

Download references

Acknowledgements

The present work has been supported by the Chongqing Research Program of Basic Research and Frontier Technology (CSTC2018jcyjAX0416, CSTC2019jcyj-msxmX0071), the Scientific and Technological Research Young Program of Chongqing Municipal Education Commission (KJQN201801509), the Excellent Talent Project in University of Chongqing (Grant no. 2017–35), the Science and Technology Innovation Project of Social Undertakings and Peoples Livelihood Guarantee of Chongqing (Grant no. cstc2017shmsA90015), the Leading Talents of Scientific and Technological Innovation in Chongqing (CSTCCXLJRC201919), the postgraduate science and technology innovation project of Chongqing University of Science and Technology (YKJCX1820214) and the Program for Creative Research Groups in University of Chongqing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chulin Fu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Cheng, L., Wu, H. et al. Effect of mass ratio on the dielectric and multiferroic properties of Co0.5Zn0.5FeCrO4/Ba0.85Ca0.15Zr0.1Ti0.9O3 composite ceramics. Appl. Phys. A 125, 848 (2019). https://doi.org/10.1007/s00339-019-3145-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3145-0

Navigation