Skip to main content
Log in

Effect of CoFe2O4 weight fraction on multiferroic and magnetoelectric properties of (1 − x)Ba0.85Ca0.15Zr0.1Ti0.9O −  xCoFe2O4 particulate composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Different compositions of the composite lead-free multiferroic magnetoelectric systems are fabricated by employing piezoelectric Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) and magnetostrictive CoFe2O4 (CFO) by varying the CFO weight fraction. The magnetic, dielectric, ferroelectric and magnetoelectric (ME) properties of the system are analyzed and found to be varying with the ferrite concentration. Even though the composite systems exhibit high magnetocapacitance (MC) properties (~ 35%), the possible stray contributions from magnetoresistance and magnetostriction make it unreliable for the quantitative determination of ME coupling coefficient (MECC). Therefore, a dynamic method is chosen for the measurement of magnetoelectric coupling. All the compositions have shown fairly good ME coupling. It is found that the ME coupling increases with ferrite fraction and the highest ME coupling of 14.8 mV/(cm Oe) is observed for 0.6BCZT–0.4CFO composite. It is also observed that the ME voltage increases linearly with the ac modulating field with a voltage generation of 1.25 V/cm (for x = 0.4) for a small ac modulating field of 100 Oe. This high sensitivity and linear response of ME coupling to the ac magnetic fields offer the possibility of employing these particulate composites for a wide range of applications from magnetic field sensors to energy harvesters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. P. Taylor, Y. Li, X. Yang et al., One-dimensional metal oxide nanotubes, nanowires, nanoribbons, and nanorods: synthesis, characterizations, properties and applications. Crit. Rev. Solid State Mater. Sci. (2012). https://doi.org/10.1080/10408436.2011.606512

    Google Scholar 

  2. Y. Zhu, J.W. Zu, A magnetoelectric generator for energy harvesting from the vibration of magnetic levitation. IEEE Trans. Magn. 48, 3344–3347 (2012). https://doi.org/10.1109/TMAG.2012.2199289

    Article  Google Scholar 

  3. C.S.C. Lekha, A.S. Kumar, S. Vivek et al., High voltage generation from lead-free magnetoelectric coaxial nanotube arrays and their applications in nano energy harvesters. Nanotechnology 28, 055402 (2017). https://doi.org/10.1088/1361-6528/28/5/055402

    Article  Google Scholar 

  4. J. Reermann, P. Durdaut, S. Salzer et al., Evaluation of magnetoelectric sensor systems for cardiological applications. Measurement 116, 230–238 (2018). https://doi.org/10.1016/j.measurement.2017.09.047

    Article  Google Scholar 

  5. R. Jahns, H. Greve, E. Woltermann et al., Sensitivity enhancement of magnetoelectric sensors through frequency-conversion. Sens. Actuators A 183, 16–21 (2012). https://doi.org/10.1016/J.SNA.2012.05.049

    Article  Google Scholar 

  6. W. Saenrang, B.A. Davidson, F. Maccherozzi et al., Deterministic and robust room-temperature exchange coupling in monodomain multiferroic BiFeO3 heterostructures. Nat. Commun. 8, 1583 (2017). https://doi.org/10.1038/s41467-017-01581-6

    Article  Google Scholar 

  7. M. Bibes, A. Barthélémy, Towards a magnetoelectric memory. Nat. Mater. 7, 425–426 (2008). https://doi.org/10.1038/nmat2189

    Article  Google Scholar 

  8. Y. Wang, J. Hu, Y. Lin, C.-W. Nan, Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater 2, 61–68 (2010). https://doi.org/10.1038/asiamat.2010.32

    Article  Google Scholar 

  9. Y. Zhang, Z. Li, C. Deng et al., Demonstration of magnetoelectric read head of multiferroic heterostructures. Appl. Phys. Lett. 92, 152510 (2008). https://doi.org/10.1063/1.2912032

    Article  Google Scholar 

  10. N. Kumar, A. Shukla, R.N.P. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J Mater Sci Mater Electron 28, 6673–6684 (2017). https://doi.org/10.1007/s10854-017-6359-y

    Article  Google Scholar 

  11. N. Kumar, A. Shukla, N. Kumar, R.N.P. Choudhary, Structural, electrical and magnetic properties of eco-friendly complex multiferroic material: Bi(Co0.35Ti0.35Fe0.30)O3. Ceram. Int. 45, 822–831 (2019). https://doi.org/10.1016/J.CERAMINT.2018.09.249

    Article  Google Scholar 

  12. D. Khomskii, Trend: classifying multiferroics: Mechanisms and effects. Physics (College Park Md) 2, 20 (2009)

    Google Scholar 

  13. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006). https://doi.org/10.1038/nature05023

    Article  Google Scholar 

  14. C.-W. Nan, M.I. Bichurin, S. Dong et al., Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008). https://doi.org/10.1063/1.2836410

    Article  Google Scholar 

  15. J.G. Wan, X.W. Wang, Y.J. Wu et al., Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol-gel process. Appl. Phys. Lett. 86, 122501 (2005). https://doi.org/10.1063/1.1889237

    Article  Google Scholar 

  16. A.J. Gualdi, F.L. Zabotto, D. Garcia et al., Understanding the dynamic magnetization process for the magnetoelectric effect in multiferroic composites. J. Appl. Phys. 119, 124110 (2016). https://doi.org/10.1063/1.4944889

    Article  Google Scholar 

  17. L.K. Pradhan, R. Pandey, R. Kumar, M. Kar, Lattice strain induced multiferroicity in PZT-CFO particulate composite. J. Appl. Phys. 123, 074101 (2018). https://doi.org/10.1063/1.5008607

    Article  Google Scholar 

  18. H. Yang, G. Zhang, Y. Lin, Enhanced magnetoelectric properties of the laminated BaTiO3/CoFe2O4 composites. J. Alloys Compd. 644, 390–397 (2015). https://doi.org/10.1016/J.JALLCOM.2015.05.020

    Article  Google Scholar 

  19. B. Sarkar, B. Dalal, V. Dev Ashok et al., Magnetic properties of mixed spinel BaTiO3-NiFe2O4 composites. J. Appl. Phys. 115, 123908 (2014). https://doi.org/10.1063/1.4869782

    Article  Google Scholar 

  20. A.S. Gaikwad, S.E. Shirsath, S.R. Wadgane et al., Magneto-electric coupling and improved dielectric constant of BaTiO3 and Fe-rich (Co0.7Fe2.3O4) ferrite nano-composites. J. Magn. Magn. Mater. 465, 508–514 (2018). https://doi.org/10.1016/J.JMMM.2018.06.036

    Article  Google Scholar 

  21. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602

    Article  Google Scholar 

  22. K.K. Mohaideen, P.A. Joy (2012) High magnetostriction and coupling coefficient for sintered cobalt ferrite derived from superparamagnetic nanoparticles High magnetostriction and coupling coefficient for sintered cobalt ferrite derived from superparamagnetic nanoparticles. Appl. Phys. Lett. https://doi.org/10.1063/1.4745922

    Google Scholar 

  23. F. Yan, G. Chen, L. Lu et al., Local probing of magnetoelectric coupling and magnetoelastic control of switching in BiFeO3-CoFe2 O4 thin-film nanocomposite. Appl. Phys. Lett. 103, 042906 (2013). https://doi.org/10.1063/1.4816793

    Article  Google Scholar 

  24. M.M. Selvi, P. Manimuthu, K.S. Kumar, C. Venkateswaran, Magnetodielectric properties of CoFe2O4–BaTiO3 core–shell nanocomposite. J. Magn. Magn. Mater. 369, 155–161 (2014). https://doi.org/10.1016/j.jmmm.2014.06.039

    Article  Google Scholar 

  25. C.G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83, 121–124 (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  Google Scholar 

  26. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 102902 (2006). https://doi.org/10.1063/1.2177543

    Article  Google Scholar 

  27. A.J. Gualdi, F.L. Zabotto, D. Garcia, A.J.A. de Oliveira, Stress magnetization model for magnetostriction in multiferroic composite. J. Appl. Phys. 114, 053913 (2013). https://doi.org/10.1063/1.4816785

    Article  Google Scholar 

  28. S. Ito, K. Aso, Y. Makino, S. Uedaira, Magnetostriction and magnetization of iron-based amorphous alloys. Appl. Phys. Lett. 37, 665–666 (1980). https://doi.org/10.1063/1.92029

    Article  Google Scholar 

  29. A. Muhammad, R. Sato-Turtelli, M. Kriegisch et al., Large enhancement of magnetostriction due to compaction hydrostatic pressure and magnetic annealing in CoFe2O4. J. Appl. Phys. 111, 013918 (2012). https://doi.org/10.1063/1.3675489

    Article  Google Scholar 

  30. R.M. Bozorth, E.F. Tilden, A.J. Williams, Anisotropy and magnetostriction of some ferrites. Phys. Rev. 99, 1788–1798 (1955). https://doi.org/10.1103/PhysRev.99.1788

    Article  Google Scholar 

  31. C.S.C. Lekha, A.S. Kumar, S. Vivek et al., Room temperature magnetoelectric properties of lead-free alkaline niobate based particulate composites. Ceram. Int. (2019). https://doi.org/10.1016/J.CERAMINT.2019.01.089

    Google Scholar 

  32. A.S. Kumar, C.S.C. Lekha, S. Vivek et al., Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater. 418, 294–299 (2016). https://doi.org/10.1016/j.jmmm.2016.02.065

    Article  Google Scholar 

  33. J. Paul Praveen, V.R. Monaji, E. Chandrakala et al., Enhanced magnetoelectric coupling in Ti and Ce substituted lead free CFO-BCZT laminate composites. J. Alloys Compd. 750, 392–400 (2018). https://doi.org/10.1016/J.JALLCOM.2018.04.026

    Article  Google Scholar 

  34. Y. Wang, Y. Pu, Y. Shi, Y. Cui, Ferroelectric, magnetic, magnetoelectric properties of the Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4 laminated composites. J. Mater. Sci. Mater. Electron. 28, 11125–11131 (2017). https://doi.org/10.1007/s10854-017-6899-1

    Article  Google Scholar 

Download references

Acknowledgements

ASK, CSC, VS, and SSN acknowledge Central University of Kerala for financial support. ASK wish to acknowledge University Grants Commission, India for the Junior and Senior Research Fellowship (F.17–131/2012(SA-1) and CSC and SSN wish to acknowledge DST, India for the financial support in WOS-A (SR/WOS-A/PS-14/2014) and YSS/2014/000431. SSN acknowledge DBT, India for the financial support through the project 6292P52/RGCB/PMD/DBT/RPKT/2015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapna S. Nair.

Ethics declarations

Conflict of interest

Authors certify that there is no actual or potential conflict of interest in relation to this article.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 120 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A.S., Lekha, C.S.C., Vivek, S. et al. Effect of CoFe2O4 weight fraction on multiferroic and magnetoelectric properties of (1 − x)Ba0.85Ca0.15Zr0.1Ti0.9O −  xCoFe2O4 particulate composites. J Mater Sci: Mater Electron 30, 8239–8248 (2019). https://doi.org/10.1007/s10854-019-01140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01140-3

Navigation