Skip to main content

Advertisement

Log in

Ferroelectric, magnetic, magnetoelectric properties of the Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4 laminated composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Magnetoelectric Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4 (BCZT/CFO) laminated composites were prepared via the conventional solid state synthesis method and their phase composition and surface morphology were investigated by X-ray diffractometry, scanning electronic microscopy and energy dispersive spectrometry. Their ferroelectric, magnetic and magnetoelectric properties were also studied. The results show that BCZT and CFO phases coexist in the composites. The magnetoelectric behavior is strongly dependent on the contents of CFO and dc magnetic field. The maximum magnetoelectric coefficient of the laminated composite reaches about 159 mV/cm Oe at 1120 Oe. Due to its ability of responding to magnetic or electric field, this laminated composite is expected to find application in data storage and magnetic field sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Matsui, H. Tanaka, N. Fujimura, T. Ito, H. Mabuchi, K. Morii, Structural, dielectric, and magnetic properties of epitaxially grown BaFeO3 thin films on (100) SrTiO3 single-crystal substrates. Appl. Phys. Lett. 81(15), 2764–2766 (2002)

    Article  Google Scholar 

  2. M. Bao. G. Zhu, K.L. Wong, J.L. Hockel, M. Lewis, J. Zhao, T. Wu, K.L. P. Amiri, Wang, Magneto-electric tuning of the phase of propagating spin waves. Appl. Phys. Lett. 101(2), 022409 (2012)

    Article  Google Scholar 

  3. R.R. Vanfleet, M. Shiverdin, J. Silcox, Z.H. Zhu, Y.H. Lo, Interface structures in GaAs wafer bonding: application to compliant substrates. Appl. Phys. Lett. 76(19), 2674–2676 (2000)

    Article  Google Scholar 

  4. C.C. Yang, Y.J. Gung, C.C. Shih, W.C. Hung, K.H. Wu, Synthesis, infrared and microwave absorbing properties of (BaFe12O19 + BaTiO3)/polyaniline composite, J. Magn. Magn. Mater. 323(7), 933–938 (2011)

    Article  Google Scholar 

  5. Y.M. Jia, F.F. Wang, X.Y. Zhao, H.S. Luo, S.W. Or, H.L.W. Chan, Converse magnetoelectric effects in piezoelectric-piezomagnetic layered composites. Compos. Sci. Technol. 68(6), 1440–1444 (2008)

    Article  Google Scholar 

  6. M. Atif, M. Nadeem, R. Grossinger, R.S. Turtelli, F. Kubel, Magnetic, dielectric and magnetoelectric properties in (1-x)Pb(Zr0.52Ti0.48)O3+(x)CoFe2O4 composites. J. Mater. Sci. 26(10), 7737–7744 (2015)

    Google Scholar 

  7. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  Google Scholar 

  8. A. Samanta, M.N. Goswami, P.K. Mahapatra, Structural, optical, dielectric, magnetic and magnetoelectric properties of Co-doped ZnO nanoparticles. J. Mater. Sci. 27(11), 12271–12278 (2016)

    Google Scholar 

  9. M. Tyagi, P. Sharma, M. Kumari, M. Thakur, Improved magnetoelectric effect in lead free [72.5(Bi1/2Na1/2TiO3)-22.5(Bi1/2K1/2TiO3)-5(BiMg1/2TiO3)]:CoFe2O4 particulate nanocomposites prepared by sol-gel method J. Mater. Sci. 28(3), 2812–2816 (2017)

    Google Scholar 

  10. R.A. Islam, S. Priya, Progress in dual (piezoelectric-magnetostrictive) phase magnetoelectric sintered composites. Adv. Cond. Matter. Phy. 2012, 320612 (2012)

    Google Scholar 

  11. C.W. Nan, M.I. Bichurin, S.X. Dong, D. Viehland, G. Srinivasan, Muliferroic magnetoelectric composites: Historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)

    Article  Google Scholar 

  12. Z.X. Chen, Y. Su, S.A. Meguid, The effect of field-orientation on the magnetoelectric coupling in Terfenol-D/PZT/Terfenol-D laminated structure. J. Appl. Phys. 116(17), 173910 (2014)

    Article  Google Scholar 

  13. J.P. Zhou, H.C. He, Z. Shi, G. Liu, C.W. Nan, Dielectric, magnetic, and magnetoelectric properties of laminated PbZr0.52Ti0.48O3/CoFe2O4 compostie ceramics. J. Appl. Phys. 100(9), 094106 (2006)

    Article  Google Scholar 

  14. H. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multilayer ceramic capacitors: past, present and future perspectives. Jpn. J. Appl. Phys. 42, 1–15 (2003)

    Article  Google Scholar 

  15. A. Reyes-Montero, L. Pardo, R. López-Juárez, A.M. González, M.P. Cruz, M.E. Villafuerte-Castrejón, Lead-free Ba0.9Ca0.1Ti0.9Zr0.1O3 piezoelectric ceramics processed below 1300 °C. J. Alloy. Compd. 584, 28–33 (2014)

    Article  Google Scholar 

  16. Z. Yu, C. Ang, R. Guo, A.S. Bhalla, Piezoelectric and strain properties of Ba(Ti1–x Zr x )O3 ceramics. J. Appl. Phys. 92(3), 1489 (2002)

    Article  Google Scholar 

  17. Z.X. Sun, Y.P. Pu, Z.J. Dong, Y. Hu, X.Y. Liu, P.K. Wang, Dielectric and piezoelectric properties and PTC behavior of Ba0.9Ca0.1Ti0.9Zr0.1O3-xLa ceramics prepared by hydrothermal method. Mater. Lett. 118, 1–4 (2014)

    Article  Google Scholar 

  18. R.K. Panda, D. Behera, Investigation of electric transport behavior of bulk CoFe2O4 by complex impedance spectroscopy. J. Alloy. Compd. 587, 481–486 (2014)

    Article  Google Scholar 

  19. J. Van den Boomgaard, D.R. Terrell, R.A.J. Born et al., An in situ grown eutectic magnetoelectric composite material. J. Mater. Sci. 9(10), 1705–1709 (1974)

    Article  Google Scholar 

  20. J. Van den Boomgaard, A. Van Run, J.V. Suchtelen, Magnetoelectricity in piezoelectric-magnetoelectritive composites. Ferroelectrics 10, 295–298 (1976)

    Article  Google Scholar 

  21. J. Van den Boomgaard, R.A.J. Born, A sintered magnetoelecctric composite materials BaTiO3- Ni(Co, Mn)Fe2O4. J. Mater. Sci. 13(7), 1538–1548 (1978)

    Article  Google Scholar 

  22. C.E. Ciomaga, M. Airimiaei, V. Nica et al., Preparation and magnetoelectric properties of NiFe2O4-PZT composites obtained in-situ by gel-combustion method. J. Eur. Ceram. Soc. 32(12), 3325–3337 (2012)

    Article  Google Scholar 

  23. J.P. Zhou, Y.J. Ma, G.B. Zhang, X.M. Chen, A uniform model for direct and converse magnetoelectric effect in laminated composite. Appl. Phys. Lett. 104(20), 202904 (2014)

    Article  Google Scholar 

  24. S. Srinivas, J.Y. Li, The effective magnetoelectric coefficients of polycrystalline multiferroic composites. Acta Mater. 53(15), 4135–4142 (2005)

    Article  Google Scholar 

  25. H.B. Yang, G. Zhang, Y. Lin, Enhanced magnetoelectric properties of the laminated BaTiO3/CoFe2O4 composites. J. Alloy. Compd. 644, 390–397 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (51372144) and the Key Program of Innovative Research Team of Shaanxi Province (2014KCT-06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongping Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Pu, Y., Shi, Y. et al. Ferroelectric, magnetic, magnetoelectric properties of the Ba0.9Ca0.1Ti0.9Zr0.1O3/CoFe2O4 laminated composites. J Mater Sci: Mater Electron 28, 11125–11131 (2017). https://doi.org/10.1007/s10854-017-6899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6899-1

Navigation