Skip to main content
Log in

Magnetoelectric coupling enhancement in lead-free BCTZ–xNZFO composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, (1 − x)Ba0.85Ca0.15Zr0.1Ti0.9O(BCZT)–xNi0.8Zn0.2Fe2O(NZFO), where x = 0.2, 0.3, and 0.4, particulate composites were prepared by conventional solid-state method. X-ray diffraction (XRD) data confirmed that the composites exist in mixed spinel-perovskite phase for all compositions. Field emission scanning electron microscopy (FESEM) was used to calculate the grain size distribution and surface morphology. The composites were investigated for the relative dielectric constant with variation in temperature and frequency. Polarization (P) vs. electric field (E) loops of the composites appear to be lossy with the increase in ferrite content. Magnetic hysteresis (MH) loops show the increase in saturation magnetization with an increase of ferrite content. Change in dielectric properties is studied under varying magnetic fields and observed maximum change in x = 0.4 composite. We observed maximum magnetoelectric coupling (ME) coefficient in x = 0.4 composite, i.e., 7.71 mV/cm Oe in unpoled and 9.45 mV/cm Oe in poled samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. N.A. Spaldin, S. Cheong, R. Ramesh, Multiferroics: past, present, and future. Phys. Today 63, 38 (2010)

    Article  Google Scholar 

  2. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, 123–152 (2005)

    Article  CAS  Google Scholar 

  3. A.S. Kumar, C.S.C. Lekha, S. Vivek, K. Nandakumar, M.R. Anantharaman, S.S. Nair, Effect of CoFe2O4 weight fraction on multiferroic and magnetoelectric properties of (1 − x)Ba0.85Ca0.15Zr0.1Ti0.9O3–xCoFe2O4 particulate composites. J. Mater. Sci. Mater. Electron. 30, 8239–8248 (2019)

    Article  CAS  Google Scholar 

  4. J. Ryu, S. Priya, K. Uchino, H. Kim, Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8, 107–119 (2002)

    Article  CAS  Google Scholar 

  5. R. Grössinger, G.V. Duong, R. Sato-Turtelli, The physics of magnetoelectric composites. J. Magn. Magn. Mater. 320, 1972–1977 (2008)

    Article  CAS  Google Scholar 

  6. D.I. Khomskii, Multiferroics: different ways to combine magnetism and ferroelectricity. J. Magn. Magn. Mater. 306, 1–8 (2006)

    Article  CAS  Google Scholar 

  7. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  CAS  Google Scholar 

  8. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104, 6694–6709 (2000)

    Article  CAS  Google Scholar 

  9. C. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2012)

    Article  CAS  Google Scholar 

  10. C.W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50, 6082–6088 (1994)

    Article  CAS  Google Scholar 

  11. S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF–BiFeO3 composites in 0–3 connectivity. J. Alloys Compd. 715, 29–36 (2017)

    Article  CAS  Google Scholar 

  12. G. Srinivasan, Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153–178 (2010)

    Article  CAS  Google Scholar 

  13. S. Srikari, Composites and applications. In: Graphene Science Handbook (2016), pp. 505–506

  14. V. Gorige, R. Kati, D.H. Yoon, P.S. Anil Kumar, Strain mediated magnetoelectric coupling in a NiFe2O4–BaTiO3 multiferroic composite. J. Phys. D 49, 405001 (2016)

    Article  CAS  Google Scholar 

  15. L.W. Martin, S.P. Crane, Y.H. Chu, M.B. Holcomb, M. Gajek, M. Huijben, C.H. Yang, N. Balke, R. Ramesh, Multiferroics and magnetoelectrics: thin films and nanostructures. J. Phys. Condens. Matter 20, 1–13 (2008)

    Article  CAS  Google Scholar 

  16. D.A. Sanchez, N. Ortega, A. Kumar, R. Roque-Malherbe, R. Polanco, J.F. Scott, R.S. Katiyar, Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate–lead zirconate titanate (PFT/PZT). AIP Adv. 1, 0421690 (2011)

    Article  CAS  Google Scholar 

  17. R. Gupta, M. Tomar, A. Kumar, V. Gupta, Performance of magnetoelectric PZT/Ni multiferroic system for energy harvesting application. Smart Mater. Struct. 26, 035002 (2017)

    Article  Google Scholar 

  18. J.D.S. Guerra, R.J. Portugal, A.C. Silva, R. Guo, A.S. Bhalla, Investigation of the conduction processes in PZT-based multiferroics: analysis from Jonscher’s formalism. Phys. Status Solidi Basic Res. 251, 1020–1027 (2014)

    Article  CAS  Google Scholar 

  19. J.A. Bartkowska, The magnetoelectric coupling effect in multiferroic composites based on PZT-ferrite. J. Magn. Magn. Mater. 374, 703–706 (2015)

    Article  CAS  Google Scholar 

  20. N. Ortega, A. Kumar, R.S. Katiyar, C. Rinaldi, Dynamic magneto-electric multiferroics PZT/CFO multilayered nanostructure. J. Mater. Sci. 44, 5127–5142 (2009)

    Article  CAS  Google Scholar 

  21. M. Zeng, J.G. Wan, Y. Wang, H. Yu, J.M. Liu, X.P. Jiang, C.W. Nan, Resonance magnetoelectric effect in bulk composites of lead zirconate titanate and nickel ferrite. J. Appl. Phys. 95, 8069–8073 (2004)

    Article  CAS  Google Scholar 

  22. S. Mokhtari, H. Ahmadvand, M.J. Fesharaki, H. Papi, P. Kameli, H. Salamati, Complex magnetoelectric effect in multiferroic composites: the case of PFN-PT/(Co, Ni)Fe2O4. J. Phys. D 52, 5050015 (2019)

    Article  CAS  Google Scholar 

  23. M. Naveed-Ul-Haq, V.V. Shvartsman, S. Salamon, H. Wende, H. Trivedi, A. Mumtaz, D.C. Lupascu, A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect. Sci. Rep. 6, 1–10 (2016)

    Article  CAS  Google Scholar 

  24. G. Herrera-Pérez, D. Morales, F. Paraguay-Delgado, R. Borja-Urby, A. Reyes-Rojas, L.E. Fuentes-Cobas, Structural analysis, optical and dielectric function of [Ba0.9Ca0.1](Ti0.9Zr0.1)O3 nanocrystals. J. Appl. Phys. 120, 1–7 (2016)

    Article  CAS  Google Scholar 

  25. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 1–4 (2009)

    Article  Google Scholar 

  26. R. Syal, M. Kumar, A.K. Singh, A. De, O.P. Thakur, S. Kumar, Enhancement in the piezoelectric properties in lead-free BZT–xBCT dense ceramics. J. Mater. Sci. Mater. Electron. 31, 21651–21660 (2020)

    Article  CAS  Google Scholar 

  27. J.P. Praveen, M.V. Reddy, J. Kolte, S.D. Kumar, V. Subramanian, D. Das, Synthesis, characterization and magneto-electric properties of (1 x)BCZT–xCFO ceramic particulate composites. Appl. Ceram. Technol. 14, 200–210 (2017)

    Article  CAS  Google Scholar 

  28. N. Shara Sowmya, A. Srinivas, K. Venu Goapl, J.P. Praveen, D. Das, S.D. Kumar, V. Subramanian, S.V. Kamat, Magnetoelectric coupling studies on (x) (0.5BZT–0.5BCT)–(100 − x) NiFe2O4 [x = 90–70 wt%] particulate composite. Ceram. Int. 43, 2523–2528 (2017)

    Article  CAS  Google Scholar 

  29. J. Rani, V.K. Kushwaha, J. Kolte, C.V. Tomy, Structural, dielectric, magnetoelectric studies of (1 − x)[0.5Ba(Zr0.2Ti0.8)O3–0.5(Ba0.7Ca0.3)TiO3]–xNi0.8Zn0.2Fe2O4 multiferroic composites. J. Alloys Compd. 696, 266–275 (2017)

    Article  CAS  Google Scholar 

  30. S. Zahi, A.R. Daud, M. Hashim, A comparative study of nickel–zinc ferrites by sol–gel route and solid-state reaction. Mater. Chem. Phys. 106, 452–456 (2007)

    Article  CAS  Google Scholar 

  31. C.A. Palacio Gómez, J.J. McCoy, M.H. Weber, K.G. Lynn, Effect of Zn for Ni substitution on the properties of Nickel–Zinc ferrites as studied by low-energy implanted positrons. J. Magn. Magn. Mater. 481, 93–99 (2019)

    Article  CAS  Google Scholar 

  32. Y. Wang, Y. Pu, Y. Tian, X. Li, Z. Wang, Y. Shi, J. Zhang, G. Zhang, Enhanced magnetoelectric properties of the laminated Ba0.9Ca0.1Ti0.9Zr0.1O3/Co0.8Ni0.1Zn0.1Fe2O4 composites. J. Alloys Compd. 696, 1307–1313 (2017)

    Article  CAS  Google Scholar 

  33. Z. Hanani, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, D. Mezzane, M. Amjoud, S. Fourcade, A.G. Razumnaya, Enhancement of dielectric properties of lead-free BCTZ ferroelectric ceramics by grain size engineering. Superlattice Microstruct. 127, 109–117 (2018)

    Article  CAS  Google Scholar 

  34. C. Andrés, P. Gómez, C. Augusto, B. Meneses, A. Matute, Structural parameters and cation distributions in solid state synthesized Ni–Zn ferrites. Mater. Sci. Eng. B 236–237, 48–55 (2018)

    Google Scholar 

  35. P. Bongurala, V. Gorige, Structural, magnetic and electric properties of multiferroic NiFe2O4–BaTiO3 composites. J. Magn. Magn. Mater. 477, 350–355 (2019)

    Article  CAS  Google Scholar 

  36. N. Shara Sowmya, A. Srinivas, P. Saravanan, K. Venu Gopal Reddy, S.V. Kamat, J. Paul Praveen, D. Das, G. Murugesan, S. Dinesh Kumar, V. Subramanian, Studies on magnetoelectric coupling in lead-free [(0.5) BCT–(0.5) BZT]–NiFe2O4 laminated composites at low and EMR frequencies. J. Alloys Compd. 743, 240–248 (2018)

    Article  CAS  Google Scholar 

  37. N. Adhlakha, K.L. Yadav, Study of structural, dielectric and magnetic behaviour of Ni0.75Zn0.25Fe2O4–Ba(Ti0.85Zr0.15)O3, Smart Mater. Struct. 21(11), 115021 (2012)

  38. R. Grigalaitis, M.M. Vijatović Petrović, J.D. Bobić, A. Dzunuzovic, R. Sobiestianskas, A. Brilingas, B.D. Stojanović, J. Banys, Dielectric and magnetic properties of BaTiO3–NiFe2O4 multiferroic composites. Ceram. Int. 40(4), 6165–6170 (2014)

    Article  CAS  Google Scholar 

  39. M. Maraj, W. Wei, B. Peng, W. Sun, Dielectric and energy storage properties of Ba(1 − x)CaxZryTi(1 − y)O3 (BCZT): a review. Materials 12(21), 3641 (2019)

    Article  CAS  Google Scholar 

  40. M. Shen, S. Ge, W. Cao, Dielectric enhancement and Maxwell–Wagner effects in polycrystalline ferroelectric multilayered thin films. J. Phys. D 34, 2935–2938 (2001)

    Article  CAS  Google Scholar 

  41. A.V. Nair, S. Vishnunarayanan, K.S. Vaishnavi, P. Suresh, P.S. Anil Kumar, Multiferroic properties of lead-free 0.2(Ni0.8 Zn0.2Fe2O4)–0.8(Ba0.85Ca0.15Zr0.1Ti0.9O3) magnetoelectric composite. IOP Conf. Ser. Mater. Sci. Eng. 577, 0–5 (2019)

    Article  CAS  Google Scholar 

  42. R. Sharma, P. Pahuja, R.P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and AC conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites. Ceram. Int. 40(7), 9027–9036 (2014)

    Article  CAS  Google Scholar 

  43. J.P. Praveen, T. Karthik, A.R. James, E. Chandrakala, S. Asthana, D. Das, Effect of poling process on piezoelectric properties of sol–gel derived BZT–BCT ceramics. J. Eur. Ceram. Soc. 35(6), 1785–1798 (2015)

    Article  CAS  Google Scholar 

  44. M. Singh, J. Singh, M. Kumar, S. Kumar, Investigations on multiferroic properties of lead free (1 − x)BCZT–xCZFMO based particulate ceramic composites. Solid State Sci. 108, 106380 (2020)

    Article  CAS  Google Scholar 

  45. G. Catalan, Magnetocapacitance without magnetoelectric coupling. Appl. Phys. Lett. 88, 1–4 (2006)

    Article  CAS  Google Scholar 

  46. K.P. Jayachandran, J.M. Guedes, H.C. Rodrigues, Homogenization method for microscopic characterization of the composite magnetoelectric multiferroics. Sci. Rep. 10, 1–13 (2020)

    Article  CAS  Google Scholar 

  47. Y. Zhang, J.P. Zhou, Q. Liu, S. Zhang, C.Y. Deng, Dielectric, magnetic and magnetoelectric properties of Ni0.5Zn0.5Fe2O+ Pb(Zr0.48Ti0.52)O3 composite ceramics. Ceram. Int. 40, 5853–5860 (2014)

    Article  CAS  Google Scholar 

  48. A. Ahlawat, S. Satapathy, P. Deshmukh, M.M. Shirolkar, A.K. Sinha, A.K. Karnal, Electric field poling induced self-biased converse magnetoelectric response in PMN-PT/NiFe2O4 nanocomposites. Appl. Phys. Lett. 111, 0–5 (2017)

    Article  CAS  Google Scholar 

  49. A.S. Kumar, C.S.C. Lekha, S. Vivek, V. Saravanan, K. Nandakumar, S.S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater. 418, 294–299 (2016)

    Article  CAS  Google Scholar 

  50. C. Nan, N. Cai, Z. Shi, J. Zhai, G. Liu, Y. Lin, Large magnetoelectric response in multiferroic polymer-based composites, 014102 (2005) 3–7

  51. H. Greve, E. Woltermann, H.J. Quenzer, B. Wagner, E. Quandt, Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96, 182501 (2010)

  52. A. Ahlawat, A.A. Khan, P. Desmukh, M.M. Shirolkar, J. Li, H. Wang, S. Satapathy, A.K. Karnal, Investigation of magneto-electric effects in (PMN-PT) @ NiFe2O4 core shell nanostructures and nanocomposites for non volatile memory applications. Mater. Lett. 261, 127082 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sanjeev Kumar is grateful to the Department of Science and Technology (DST), Government of India, for generous funding through Grant CRG/2018/001426. P. Bansal is thankful to DST for providing fellowship in the form of JRF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bansal, P., Kumar, M., Syal, R. et al. Magnetoelectric coupling enhancement in lead-free BCTZ–xNZFO composites. J Mater Sci: Mater Electron 32, 17512–17523 (2021). https://doi.org/10.1007/s10854-021-06284-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06284-9

Navigation