Skip to main content
Log in

Influence of NaNbO3 on the structural, optical and dielectric properties of 0.05(K0.5Bi0.5TiO3)–0.95(NaNbO3) composites ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new polycrystalline lead-free 0.05(K0.5Bi0.5TiO3)–0.95(NaNbO3) (KBT–NN) composites ceramics have been prepared by solid-state reaction method and their structural, optical, dielectric, ferroelectric and impedance properties are investigated. X-ray diffraction and Rietveld refinement data reveal that this composites ceramics possesses a perovskite-type orthorhombic structure after the diffusion of K0.5Bi0.5TiO3 into the NaNbO3. An appreciable change in its vibrational phonon modes of KBT on addition of NaNbO3 is exhibited in the material as observed from Fourier-transform infrared spectroscopy (FT-IR) spectrum. The optical band gap energy of the sample is determined from the diffused absorbance spectra to be 3.2 eV, which may be useful in photo-catalytic application. In the frequency range of 130–900 cm−1, different vibrational modes are observed from Raman spectrum. Field emission scanning electron microscopy (FE-SEM) images reveal a well-defined and homogeneous morphology. Polarization vs. electric field study confirms the ferroelectricity. Dielectric and complex impedance spectroscopic studies are performed over a wide range of frequency (i.e., 103–106 Hz) and temperature (30°–500 °C) and it is found that Jonscher’s power law is well applicable to the alternating current (ac) conductivity spectrum. The direct current (dc) conductivity of the material, which depends upon temperature, exhibits the decrease resistance with increase of temperature similar to that of semiconductors. The dc conductivity confirms that the conduction mechanism is influenced by oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T. Wang, H. Du, X. Shi, Dielectric and ferroelectric properties of (1-x)Na0.5Bi0.5TiO3-xSrTiO3 lead-free piezoceramics system. J. Phys. 152, 012065 (2009)

    Google Scholar 

  2. B. Parija, S.K. Rout, L.S. Cavalcante, A.Z. Simões, S. Panigrahi, E. Longo, N.C. Batista, Structure, microstructure and dielectric properties of 100–x(Bi0.5Na0.5)TiO3x[SrTiO3], composites ceramics. Appl. Phys. A 109, 715 (2012)

    Article  Google Scholar 

  3. M. Rawat, K.L. Yadav, Dielectric, ferroelectric and magnetoelectric response in Ba0.92(Bi0.5Na0.5)0.08TiO3–Ni0.65Zn0.35Fe2O4 composite ceramics. Smart Mater. Struct. 23, 085032 (2014)

    Article  Google Scholar 

  4. D. White, X. Zhao, M.F. Bresser, X. Tan, Structure and properties of (1–x)Pb(Mg1/2W1/2)O3xPb(Zr0.5Ti0.5)O3 solid solution ceramics. J. Mater. Sci. 43, 5258 (2008)

    Article  Google Scholar 

  5. M.D. Maeder, D. Damjanovic, N. Setter, Lead free piezoelectric materials. J. Electroceram. 13, 385 (2004)

    Article  Google Scholar 

  6. R. Selvamani, G. Singh, V. Sathe, V.S. Tiwari, P.K. Gupta, Dielectric, structural and Raman studies on (Na0.5Bi0.5TiO3)(1–x)(BiCrO3)x ceramic. J. Phys. 23, 55901 (2011)

    Google Scholar 

  7. C.F. Buhrer, Some properties of bismuth perovskites. J. Chem. Phys. 36, 798 (1962)

    Article  Google Scholar 

  8. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, Impedance and Raman spectroscopic studies of (Na0.5Bi0.5)TiO3. J. Phys. D: Appl. Phys. 44, 355402 (2011)

    Article  Google Scholar 

  9. X. Lu, J. Xu, L. Yang, C. Zhou, Y.Y. Zhao, C. Yuan, Q. Li, G. Chen, H. Wang, Energy storage properties of (Bi0.5Na0.5)0.93Ba0.07TiO3 lead-free ceramics modified by La and Zr co-doping. J. Materiomics 2, 87 (2016)

    Article  Google Scholar 

  10. Y. Hiruma, R. Aoyagi, H. Nagata, T. Takenaka, Ferroelectric and piezoelectric properties of (Bi1/2K1/2)TiO3 ceramics. Jpn. J. Appl. Phys. 44, 5040 (2005)

    Article  Google Scholar 

  11. J. Guo, M. Zhu, L. Li, M. Zheng, Y. Hou, Relaxor to ferroelectric crossover in KBT ceramics by prolonged annealing. J. Alloys. Compd. 703, 448 (2017)

    Article  Google Scholar 

  12. Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang, H. Yan, Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique. J. Cryst. Growth 273, 500 (2005)

    Article  Google Scholar 

  13. W.L. Li, W.P. Cao, D. Xu, W. Wang, W.D. Fei, Phase structure and piezoelectric properties of NBT–KBT–BT ceramics prepared by sol–gel flame synthetic approach. J. Alloys. Compd. 613, 181 (2014)

    Article  Google Scholar 

  14. G.A. Babu, R. Subhramanyam, I. Bhaumik, S. Ganeshmoorthy, P. Ramasamy, P.K. gupta, Growth and characterization of undoped and Mn doped lead-free piezoelectric NBT–KBT single crystals. Mat. Res. Bull. 53, 136 (2014)

    Article  Google Scholar 

  15. T. Karthik, S. Asthana, Enhanced mechanical and ferroelectric properties through grain size refinement in site specific substituted lead free Na0.5–xKxBi0.5TiO3 (x = 0–0.10) ceramics. Mater. Lett. 190, 273 (2017)

    Article  Google Scholar 

  16. H. Xie, D. Li Jin, X. Shen, Wang, G. Shen, Morphotropic phase boundary, segregation effect and crystal growth in the NBT-KBT system. J. Cryst. Growth 311, 3626 (2009)

    Article  Google Scholar 

  17. X.H. Hao, A review on the dielectric materials for high-energy storage application. J. Adv. Dielectr. 3, 1330001 (2013)

    Article  Google Scholar 

  18. B. Jaffe, W.R. Cook, H. Jaffe, Piezoelectric Ceramics, (Academic Press, London, 1971), p. 190

    Google Scholar 

  19. S. Lanfredi, M.H. Lente, J.A. Eiras, Phase transition at low temperature in NaNbO3 ceramic. Appl. Phys. Lett. 80, 2731 (2002)

    Article  Google Scholar 

  20. S. Tripathi, D. Pandey, S.K. Mirshra, P.S.R. Krishna, Morphotropic phase-boundary-like characteristic in a lead-free and non-ferroelectric (1-x)NaNbO3-xCaTiO3system. Phys. Rev. B 77, 052104 (2008)

    Article  Google Scholar 

  21. T. Zeng, K.W. Kwok, H.L.W. Chan, Ferroelectric and Piezoelectric properties of Na1 – xBaxNb1–xTixO3 ceramics. J. Am. Ceram. Soc. 89, 2828 (2006)

    Google Scholar 

  22. M.T. Benlahrache, N. Benhamla, S. Achour, Dielectric properties of BaTiO3–NaNbO3 composites. J. Eur. Ceram. Soc. 24, 1493 (2004)

    Article  Google Scholar 

  23. H. Wu, A. Navrotsky, Y. Su, M.L. Balmer, Perovskite solid solutions along the NaNbO3–SrTiO3 join: phase transitions, formation enthalpies, and implications for general perovskite energetics. Chem. Mater. 17, 1880 (2005)

    Article  Google Scholar 

  24. A. Aydi, H. Khemakhem, C. Boudaya, R. Mühll, New ferroelectric and relaxor ceramics in the mixed oxide system NaNbO3–BaSnO3,. Solid State Sci. 6, 333 (2004)

    Article  Google Scholar 

  25. C. Chaker, W.E. Gharbi, N. Abdelmoula, H. Khemakhem, A. Simon, M. Maglione, Physical properties of the new ceramics in the mixed oxide system Na1–xLixNb1–xSbxO3,. J. Alloys Compd. 481, 305 (2009)

    Article  Google Scholar 

  26. D. Lin, K.W. Kwok, Ferroelectric and piezoelectric properties of new NaNbO3–Bi0.5K0.5TiO3 lead-free ceramics. J. Mater.Sci. 21, 1060 (2010)

    Google Scholar 

  27. J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (Chapter-4) (Wiley, New York, 1987)

    Google Scholar 

  28. A.P. Barranco, M.P.G. Amador, A. Huanosta, R. Valenzuela, Phase transitions in ferrimagnetic and ferroelectric ceramics by Ac measurements Appl. Phys. Lett. 73, 2039 (1998)

    Article  Google Scholar 

  29. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 22, 65–71 (1969)

    Article  Google Scholar 

  30. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley Publishing co. Inc., Reading, 1978

  31. http://www.sigmaplot.co.uk/products/peakfit/peakfit.php

  32. Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang, H. andYan, Synthesis and characterization of lead-free K0.5Bi0.5TiO3 ferroelectrics by sol–gel technique. J. Cryst. Growth 273, 500 (2005)

    Article  Google Scholar 

  33. Z.S. D-Ling, L.M. Tao, G.Z. Hui, C.G. Bin, W. Xu, C. Jia, Y. Feng, Raman spectroscopic study of ceramic Sr2Bi4Ti5O18. Chin. Phys. 15, 0854 (2006)

    Article  Google Scholar 

  34. M. Rusty. Pittman, T. Alexies, Bell, Raman studies of the structure of niobium oxide/titanium oxide (Nb2O5.TiO2). J.Phys. Chem. 97, 12178 (1993)

    Article  Google Scholar 

  35. M.F. Mostafa, S.S. Ata-Allah, A.A.A. Youssef, H.S. Refai, Electric and AC magnetic investigation of the manganites La0.7Ca0.3Mn0.96In0.04xAl(1–x)0.04O3; (0.0≤x≤1.0). J. Magn. Magn. Mat. 320, 344 (2008)

    Article  Google Scholar 

  36. S. Coste, A. Lecomte, P. Thomas, T. Merle-Mejean, J.C. Champarnaud-Mesjard, Sol-gel synthesis of TeO2-based materials using citric acid as hydrolysis modifier. J.Sol-Gel Sci. Technol. 41, 79 (2007)

    Article  Google Scholar 

  37. E.A. Perianu, I.A. Gorodea, F. Gheorghiu, A.V. Sandu, A.C. Ianculescu, I. Sandu, A.R. Iordan, M.N. Palamaru, Rev. Chim. 62, 17 (2011)

    Google Scholar 

  38. R.L. Frost, J. Yang, Z. Ding, Raman and FTIR spectroscopy of natural oxalates: implications for the evidence of life on Mars. Chin. Sci. Bull. 48, 1844 (2003)

    Article  Google Scholar 

  39. B.N. Parida, R.K. Parida, A. Panda, Multi-ferroic and optical spectroscopy properties of (Bi0.5Sr0.5) (Fe0.5Ti0.5) O3 solid solution. J. Alloys Compd. 696, 338–344 (2017)

    Article  Google Scholar 

  40. M. Zheng-Zheng, L. Jian-Qing, T. Z-Ming, Q. Yang, Y. Song-Liu, Improved multiferroic properties of La-doped 0.6BiFeO3–0.4SrTiO3 solid solution ceramics. Chin. Phys. B 21, 107503 (2012)

    Article  Google Scholar 

  41. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, Electrical relaxation in Na2O·3SiO2 glass. J. Am. Ceram. Soc. 55, 492 (1972)

    Article  Google Scholar 

  42. H. Jain, C.H. Hsieh, ‘Window’ effect in the analysis of frequency dependence of ionic conductivity. J. Non-Cryst. Solids 172, 1408 (1994)

    Article  Google Scholar 

  43. C.K. Suman, K. Prasad, R.N.P. Choudhary, Complex impedance studies on tungsten-bronze electroceramic: Pb2Bi3LaTi5O18. J. Mater. Sci. 41, 369 (2006)

    Article  Google Scholar 

  44. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Complex impedance studies of sodium pyrotungstate – Na2W2O7. Phys. Status Sol. 201, 588 (2004)

    Article  Google Scholar 

  45. P.R. Das, B. Pati, B.C. Sutar, R.N.P. Choudhary, Electrical properties of complex tungsten bronze ferroelectrics; Na2Pb2R2W2Ti4V4O30 (R = Gd, Eu). Adv. Mater. Lett. 3, 8 (2012)

    Article  Google Scholar 

  46. A. Feteira, Negative temperature coefficient Resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am.Ceram. Soc. 92, 967 (2009)

    Article  Google Scholar 

  47. R. Sagar, P. Hudge, S. Madolappa, A.C. Kumbharkhane, R.L. Raibagkar, Electrical properties and microwave dielectric behavior of holmium substituted barium zirconium titanate ceramics. J. Alloys Compd. 537, 197 (2012)

    Article  Google Scholar 

  48. D.C. Sinclair, A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance. J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  49. Z. Imran, M.A. Rafiq, K. Rasool, S.S. Batool, M.M. Hasan, Temperature dependent transport and dielectric properties of cadmium titanate nanofiber mats. AIP Adv. 3, 032146 (2013)

    Article  Google Scholar 

  50. S.M. Pilgrim, A.E. Sutherland, S.R. Winzer, Diffuseness as a useful parameter for relaxor ceramics. J. Am. Ceram. Soc. 73, 3122 (1990)

    Article  Google Scholar 

  51. P.S. Das, P.K. Chakraborty, B. Behera, R.N.P. Choudhary, Electrical properties of Li2BiV5O15 ceramics. Physica B 395, 98 (2007)

    Article  Google Scholar 

  52. I.M. Hodge, M.D. Ingram, A.R. West, A new method for analysing the a.c. behaviour of polycrystalline solid electrolytes. J. Electroanal. Chem. Interfacial Electrochem. 58, 429 (1975)

    Article  Google Scholar 

  53. J.R. Macdonald, Note on the parameterization of the constant-phase admittance element. Solid State Ionics 13, 147 (1984)

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors H.S.Mohanty acknowledges the financial support from CSIR, India for the SRF fellowship. First author S.K. Mohanty acknowledge the help of Dr. P.K. Sahoo for extending experimental facilities in NISER, Bhubaneswar and UGC for sanctioning Study Leave under FDP programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush R. Das.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S.K., Mohanty, H.S., Behera, B. et al. Influence of NaNbO3 on the structural, optical and dielectric properties of 0.05(K0.5Bi0.5TiO3)–0.95(NaNbO3) composites ceramics. J Mater Sci: Mater Electron 30, 5833–5844 (2019). https://doi.org/10.1007/s10854-019-00881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00881-5

Navigation