Skip to main content
Log in

Electrical and optical properties of lead-free 0.15(K0.5Bi0.5TiO3)–0.85(NaNbO3) solid solution

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Polycrystalline lead free 0.15(K0.5Bi0.5TiO3)–0.85(NaNbO3) ceramic is synthesized using conventional solid state reaction technique. Structural, dielectric, optical and impedance properties of the sample are investigated. X-ray diffraction (XRD) study reveals K0.5B0.5TiO3 (KBT) diffusing into the NaNbO3 (NN) lattices to form a new perovskite-type solid solution with orthorhombic structure (space group Pmc2 1 ) at room temperature. Addition of small amount of KBT transforms NN ceramic from anti-ferroelectric to ferroelectric material. The XRD data has been refined using Rietveld refinement technique. FTIR spectra reflect an appreciable change in its vibrational phonon modes of the sample. The optical band gap is estimated to be 3.02 eV from the diffused absorbance spectra, which is useful in photo catalytic applications. Different vibrational modes in the frequency range of 130–900 cm−1 is observed from the Raman spectrum. FESEM micrograph reveals the homogeneous grains and well-defined grain boundaries with some few pores. Dielectric and complex impedance spectroscopic studies are carried out in a wide range of frequency (i.e., 103–106 Hz) and temperature (30–475 °C). The presence of ferroelectric properties is confirmed from P–E loop. A strong correlation between its microstructure and electrical parameters is established from the study of the electrical properties of the material. The ac conductivity spectrum obeys Jonscher’s power law. Negative temperature coefficient of resistance behavior of the material is inferred from temperature dependence of dc conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. Fu, H. Taniguchi, M. Itoh, S. Koshihara, N. Yamamoto, S. Mori, Phys. Rev. Lett. 103, 207601 (2009)

    Article  Google Scholar 

  2. M.D. Maeder, D. Damjanovic, N. Setter, J. Electroceram. 13, 385 (2004)

    Article  Google Scholar 

  3. O. Raymond, R. Font, J. Portelles, J.M. Siqueiros, J. Appl. Phys. 109, 094106 (2011)

    Article  Google Scholar 

  4. N. Wakiya, N. Ishizawa, K. Shinozaki, N. Mizutani, Mater. Res. Bull. 30, 1121 (1995)

    Article  Google Scholar 

  5. B.K. Barick, K.K. Mishra, A.K. Arora, R.N.P. Choudhary, D.K. Pradhan, J. Phys. D: Appl. Phys. 44, 355402 (2011)

    Article  Google Scholar 

  6. X. Lu, J. Xu, L. Yang, C. Zhou, Y.Y. Zhao, C. Yuan, Q. Li, G. Chen, H. Wang, J. Materiomics, 2, 87

  7. P.V.B. Rao, E.V. Ramana, T.B. Sankaram, J. Alloys Comp. 467, 293 (2009)

    Article  Google Scholar 

  8. G.A. Babu, R. Subhramanyam, I. Bhaumik, S. Ganeshmoorthy, P. Ramasamy, P.K. Gupta, Mat. Res. Bull. 53, 136 (2014)

    Article  Google Scholar 

  9. T. Karthik, S. Asthana, Mater. Lett 190, 273 (2017)

    Article  Google Scholar 

  10. H. Xie, D. Li Jin, X. Shen, G. Wang, Shen, J. Cryst. Growth 311, 3626 (2009)

    Article  Google Scholar 

  11. X.H. Hao, J. Adv. Dielectr. 3, 1330001 (2013)

    Article  Google Scholar 

  12. S.K. Mishra, N. Choudhury, S.L. Chaplot, P.S.R. Krishna, R. Mittal, Phys. Rev. B 76, 024110 (2007)

    Article  Google Scholar 

  13. S. Lanfredi, M.H. Lente, J.A. Eiras, Appl. Phys. Lett. 80, 27

  14. M.T. Benlahrache, N. Benhamla, S. Achour, J. Eur. Ceram. Soc. 241, 493 (2004)

    Google Scholar 

  15. H. Wu, A. Navrotsky, Y. Su, M.L. Balmer, Chem. Mater. 17,1880 (2005)

  16. A. Aydi, H. Khemakhem, C. Boudaya, R.V. Mühll, Solid State Sci. 6, 333, (2004)

    Article  Google Scholar 

  17. C. Chaker, W.E. Gharbi, N. Abdelmoula, H. Khemakhem, A. Simon, M. Maglione, J. Alloys Compd. 481, 305 (2009)

    Article  Google Scholar 

  18. D. Lin, K.W. Kwok, J. Mater. Sci: Mater. Electron. 21, 1060 (2010)

    Google Scholar 

  19. J. Rodriguez-Carvajal, Phys. B 192, 55 (1993)

    Article  Google Scholar 

  20. A. Monshi, M.R. Foroughi, M.R. Monshi, World J. Nano Sci. Eng. 2, 154 (2012)

    Article  Google Scholar 

  21. R.L. Frost, J. Yang, Z. Ding, Chin. Sci. Bull. 48, 1844 (2003)

    Article  Google Scholar 

  22. M. Zheng-Zheng, L. Jian-Qing, T. Z-Ming, Q. Yang, Y. Song-Liu, Chin. Phys. B 21, 107503 (2012)

    Article  Google Scholar 

  23. B.N. Parid.a, R.K. Parida, A. Panda, J. Alloys Comp. 696, 338 (2017)

    Article  Google Scholar 

  24. M.F. Mostafa, S.S. Ata-Allah, A.A.A. Youssef, H.S. Refai, J. Magn. Magn. Mat. 320, 344 (2008)

    Article  Google Scholar 

  25. S. Coste, A. Lecomte, P. Thomas, T. Merle-Mejean, J.C. Champarnaud-Mesjard, J. Sol-Gel Sci. Technol. 41, 79 (2007)

    Article  Google Scholar 

  26. E.A. Perianu, I.A. Gorodea, F. Gheorghiu, A.V. Sandu, A.C. Ianculescu, I. Sandu, A.R. Iordan, M.N. Palamaru, Rev. Chim. 62(1), 17 (2011)

    Google Scholar 

  27. Peak Fit Software. http://www.sigmaplot.co.uk/products/peakfit/peakfit.php

  28. Y. Hou, M. Zhu, L. Hou, J. Liu, J. Tang, H. Wang, H. Yan. J. Cryst. Growth 273, 500 (2005)

    Article  Google Scholar 

  29. D. Chao-Ling, Z. Shan-Tao, L.M. Hui, G. Zheng-Bin, C. Guang-Xu, W. Jia, C. Yan-Feng, Chin. Phys. 4, 0854 (2006)

    Article  Google Scholar 

  30. M. Karpierz, J. Suchanicz, K. Konieczny, D. Sitko, P. Marchet, U. Lehuczuk, Ph. Transit. 88, 662 (2015)

    Article  Google Scholar 

  31. R.M. Pittman. A.T. Bell, J. Phys. Chem. 97, 12178 (1993)

    Article  Google Scholar 

  32. H. Idink, V. Srikanth, W.B. White, E.C. Subbarao, J. Appl. Phys. 76, 1819 (1994)

    Article  Google Scholar 

  33. J.C. Anderson, Dielectrics (Chapman & Hall, London, 1964)

    Google Scholar 

  34. P.R. Das, B. Pati, B.C. Sutar, R.N.P. Choudhary, Adv. Mater. Lett. 3(1), 8 (2012)

    Article  Google Scholar 

  35. S.K. Pradhan, S.N. Das, S. Halder, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 28, 9627 (2017)

    Google Scholar 

  36. C.S. Devi, M. Buchi Suresh, G.S. Kumar, G. Prasad, Mater. Sci. Eng. B 228, 38 (2018)

    Article  Google Scholar 

  37. C.G. Koops, Phys. Rev. 83, 121 (1951)

    Article  Google Scholar 

  38. P. Gupta, R. Padhee, P.K. Mohapatra, R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 28, 17344 (2017)

    Google Scholar 

  39. D.C. Sinclair, A.R. West, J. Appl. Phys. 66, 3850 (1989)

    Article  Google Scholar 

  40. G.G. Roberts, B. Holcroft, Thin Solid Films 180, 211 (1989)

    Article  Google Scholar 

  41. S.N. Das, A. Pattanaik, S. Kadambini, S. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci: Mater. Electron. 27, 10099 (2016)

    Google Scholar 

  42. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, R.S. Katiyar, J. Mater. Sci. 42, 7423 (2007)

    Article  Google Scholar 

  43. D.K. Pradhan, B. Behera, P.R. Das, J. Mater. Sci.: Mater. Electron. 23, 779 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piyush R. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, S.K., Behera, B., Pati, B. et al. Electrical and optical properties of lead-free 0.15(K0.5Bi0.5TiO3)–0.85(NaNbO3) solid solution. J Mater Sci: Mater Electron 29, 12269–12277 (2018). https://doi.org/10.1007/s10854-018-9340-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9340-5

Navigation