Skip to main content
Log in

Sol-gel synthesis of TeO2-based materials using citric acid as hydrolysis modifier

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol-gel processing of tellurium oxide has been investigated in the tellurium isopropoxide/citric acid/isopropanol/water system. As evidenced by Fourier transformed infrared spectroscopy (FTIR), citric acid has been found to be a relevant chemical modifier to control hydrolysis-condensation reactions of highly reactive tellurium isopropoxide Te(OCH(CH3)2)4. Thus, depending on the main synthesis chemical parameters such as alkoxide concentration, water and modifier ratios, colloidal sols and gels have been successfully synthesised. The thermal behaviour of the dried gels has been investigated by X-ray diffraction, differential scanning calorimetry coupled with thermogravimetry and also FTIR spectroscopy. On the one hand, the crystallisation of the non-centrosymmetric γ-TeO2 polymorph as well as the α-TeO2 phase which the crystallite size ranges from a few ten nanometers (∼50 nm) to a few microns as a function of heat treatment, and, on the other hand, the synthesis of homogeneous sols which can be handled in air and so particularly suitable for the elaboration of thin films provide new opportunities for making tellurite based materials and thin film devices for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hall DW, Newhause MA, Borelli NF, Dumaugh WH, Weidman DL (1988) Appl Phys Lett 54:1293

    Article  Google Scholar 

  2. El-Mallawany RAH (2001) Tellurite glasses handbook: physical properties and data. CRC Press, Boca Raton, Florida

    Google Scholar 

  3. Kim S-H, Yoko T, Sakka S (1993) J Am Ceram Soc 76:2486

    Article  CAS  Google Scholar 

  4. Jeansannetas B, Blanchandin S, Thomas P, Marchet P, Champarnaud-Mesjard JC, Merle-Mejean T, Frit B, Nazabal V, Fargin E, Le Flem G, Marti MO, Bousquet B, Canioni L, Le Boiteux S, Segonds P, Sarger L (1999) J Sol St Chem 146:329

    Article  CAS  Google Scholar 

  5. Stegeman R, Rivero C, Richardson K, Stegeman G, Delfyett Jr P, Guo Y, Pope A, Schulte A, Cardinal T, Thomas P, Champarnaud-Mesjard JC (2005) Opt Express 13:1144

    Article  CAS  Google Scholar 

  6. Pierre A, Duboudin F, Tanguy B, Portier J (1992) J Non-Cryst Solids 147&148:569

    Article  Google Scholar 

  7. Hodgson SNB, Weng L (2000) J Non-Cryst Solids 276:195

    Article  CAS  Google Scholar 

  8. Weng L, Hodgson SNB (2001) Mater Sci Eng B87:77

    Article  CAS  Google Scholar 

  9. Weng L, Hodgson SNB (2002) J Non-Cryst Solids 297:18

    Article  CAS  Google Scholar 

  10. Weng L, Hodgson SNB (2002) Opt Mat 19:313

    Article  CAS  Google Scholar 

  11. Doeuff S, Henry M, Sanchez C, Livage J (1987) J Non-Cryst Solids 89:206

    Article  CAS  Google Scholar 

  12. Coste S, Thomas P, Lecomte A, Champarnaud-Mesjard J-C, Guinebretière R, Dauger A (2002) Phys Chem Glasses 43C:405

    Google Scholar 

  13. Coste S (2003) Thesis of the University of Limoges, France

  14. Coste S, Lecomte A, Thomas P, Champarnaud-Mesjard JC, Merle-Mejean T, Guinebretière R (2004) J Non-Cryst Solids 345&346:634

    Article  CAS  Google Scholar 

  15. Pechini M (1967) U.S. Patent, n°3 330 697 (July 11th 1967)

  16. Pechini M (1966) U.S. Patent, n°3 231 328 (January 25th 1966)

  17. Masson O (1998) Thesis of the University of Limoges, France

  18. Alcock NW, Tracy VM, Waddington TC (1976) J Chem Soc Dalton Trans 2243

  19. Mehrotra RC, Bohra R (1983) Metal carboxylates. Academic Press, London

    Google Scholar 

  20. Deacon GB, Phillips RJ (1980) Coord Chem Rev 33:227

    Article  CAS  Google Scholar 

  21. Tsay JD, Fang T-T (1999) J Am Ceram Soc 82(6):1409

    Article  CAS  Google Scholar 

  22. Rajendran M, Subba Rao M (1994) J Solid State Chem 113:239

    Article  CAS  Google Scholar 

  23. Alcock NW, Tracy VM, Waddington TC (1976) J Chem Soc Dalton Trans 2243

  24. Mehrotra RC, Bohra R (1983) Metal carboxylates. Academic Press, London, p 48

    Google Scholar 

  25. Lecomte A, Lenormand P, Dauger A (2000) J Appl Cryst 33:496

    Article  CAS  Google Scholar 

  26. Dutreilh-Colas M (2001) Thesis of the University of Limoges, France

  27. Masson O, Guinebretière R, Dauger A (1998) Mat Sci Forum 278–281, Proc. of the 5th EPDIC, 115

  28. Langford JI (1978) J Appl Cryst 11:10

    Article  CAS  Google Scholar 

  29. Langford JI (1992) In: Prince E, Stalick JK (eds) Accuracy in Powder Diffraction II. NIST special publication, 846 Washington, p 110

  30. Williamson GK, Hall WH (1953) Acta Metall 1:22

    Article  CAS  Google Scholar 

  31. Lecomte A, Bamière F, Coste S, Thomas P, Champarnaud-Mesjard JC (in press) J Eur Ceram Soc

  32. Vrillet G, Lasbrugnas C, Thomas P, Masson O, Couderc V, Barthélémy A, Champarnaud-Mesjard JC (2005) J Mat Sci 40:4975

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coste, S., Lecomte, A., Thomas, P. et al. Sol-gel synthesis of TeO2-based materials using citric acid as hydrolysis modifier. J Sol-Gel Sci Technol 41, 79–86 (2007). https://doi.org/10.1007/s10971-006-0117-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-006-0117-6

Keywords

Navigation