Skip to main content
Log in

Effect of lattice strain on structural, magnetic and dielectric properties of sol–gel synthesized nanocrystalline Ce3+ substituted nickel ferrite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The rare earth ion cerium (Ce3+) doped nickel ferrite nanoparticles with a structural formula NiCexFe2−xO4 (0.0 ≤ x ≤ 0.1) were procured using the sol–gel technique. The structural and morphological analysis of the as prepared sample was done using the X-ray diffraction (XRD) and HRSEM studies. A more in-depth morphological study was facilitated using the TEM, HR-TEM and SAED analysis. The position of the various ions was studied using the FTIR spectroscopy. The magnetic response of the cerium doped parent sample was recorded at room temperature using the vibrating sample magnetometer. The dielectric response of the synthesized sample was observed and analyzed at different temperatures for various frequencies. The well resolved broad peaks in the XRD pattern clearly indicated the nanosized, single phased, cubic spinel nature of these samples. There was a substantial decrease in the crystallite size on doping with cerium. Cerium was successfully substituted into the spinel lattice without any distortion. The TEM investigation revealed random shaped, sharp edged nanoparticles with a normally facetted morphology. The presence of distinctive diffractions spots on the SAED pattern indicated the formation of nanoparticles that are highly crystalline in nature. The FTIR analysis revealed a slight shift in the octahedral absorption band at γ2 towards the lower frequency side with the incorporation of cerium ions. The magnetic properties have been seen to be altered by the addition of Ce3+ in the Ni ferrite matrix. The decrease in the saturation magnetization with the increase in Ce3+ content rendered the synthesized sample applicable in field of antenna construction. This change will be also suitable for reducing the size of the antenna. The variation of the dielectric constant with frequency indicated a monotonous decrease with increasing frequency which is a typical dielectric response of ferrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mahindrakar Rohini, S.G. Algude, D.S. Birajdar, J. Phys. 1(1), 14–19 (2010)

    Google Scholar 

  2. B.P. Rao, K.H. Rao, A.P. Rao, T.V. Rao, Pandarua, O.F. Caltun, J. Optoelectron. Adv. Mater. 7, 701 (2005)

    Google Scholar 

  3. A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Res. Chem. Intermed. 43, 6155–6165 (2017)

    Article  Google Scholar 

  4. C.V. Gopal Reddy, S.V. Manorama, V.J. Rao, Sens. Actuators B 55(1), 90–95 (1999)

    Article  Google Scholar 

  5. C.P. Luo, S.H. Liou, L. Gao, Appl. Phys. Lett. 77, 2225–2227 (2000)

    Article  Google Scholar 

  6. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, J. Mater. Sci.: Mater. Electron. 26, 9776–9781 (2015)

    Google Scholar 

  7. L.A. Vermenko, T.Y. Gridasova, E.N. Lukachina, Sov. Powder Metall. Met. Ceram. 12(9), 732–735 (1973)

    Article  Google Scholar 

  8. Z. Zhang, Y. Liu, G. Yao, G. Zu, Y. Hao, Int. J. Appl. Ceram. Technol. 10, 142 (2013)

    Article  Google Scholar 

  9. J.E. Rosen, L. Chan, D.B. Shieh, F.X. Gu, Nanomedicine 8, 275 (2012)

    Article  Google Scholar 

  10. N.A. Frey, S. Peng, K. Cheng, S. Sun, Chem. Soc. Rev. 38, 2532 (2009)

    Article  Google Scholar 

  11. G. Dixit, P. Negi, J.P. Singh, R.C. Srivastava, H.M. Agrawal, J. Supercond. Novel Magn. 26(4), 1015–1019 (2013)

    Article  Google Scholar 

  12. M.A. Ahmed, E. Ateia, G. Abdelatif, F.M. Salem, Mater. Chem. Phys. 81, 63–77 (2003)

    Article  Google Scholar 

  13. K.K. Bharathi, G. Markandeyulu, J. Appl. Phys. 103, 07E309 (2008)

    Article  Google Scholar 

  14. S. Rathod, V.G. Deonikar, P.P. Mirage, Adv. Sci. Lett. 22(4), 964–966 (2016)

    Article  Google Scholar 

  15. S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, S.J. Shukla, K.M. Jadhav, Int. J. Mod. Phys. B 23, 5629 (2009)

    Article  Google Scholar 

  16. J. Giri, T. Sriharsha, D. Bahadur, J. Mater. Chem. 14, 875 (2004)

    Article  Google Scholar 

  17. H. Sato, T. Hameda, IEEE Magn. Trans. 34, 76 (1993)

    Google Scholar 

  18. A.K. Nikumbh, R.A. Pawar, D.V. Nighot, G.S. Gugale, M.D. Sangale, M.B. Khanvilkar, A.V. Nagawade, J. Magn. Magn. Mater. 355, 201–209 (2014)

    Article  Google Scholar 

  19. J. Depeyrot, E.C. Sousa, R. Aquino, F.A. Tourinho, E. Dubois, J.-C. Bacri, R. Perzynski, J. Magn. Magn. Mater. 252, 375–377 (2002)

    Article  Google Scholar 

  20. M. Yehia, S.M. Ismail, A. Hashhash, J. Supercond. Novel Magn. 37, 771–774 (2014)

    Article  Google Scholar 

  21. M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, J. Mater. Sci.: Mater. Electron. 27, 11691–11697 (2016)

    Google Scholar 

  22. J. Zhou, J. Ma, C. Sun, L. Xie, Z. Zhao, H. Tian, J. Am. Ceram. Soc. 88, 3535–3537 (2005)

    Article  Google Scholar 

  23. B.D. Cullity, Elements of X-ray diffraction (Addison-Wesley, London, 1967)

    Google Scholar 

  24. A. Ziarati, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, J. Rare Earths 35, 374–381 (2017)

    Article  Google Scholar 

  25. S. Anand, A.P. Amaliya, M. Asisi Janifer, S. Pauline, Mod. Electron. Mater. 3, 168–173 (2017)

    Article  Google Scholar 

  26. V. Kumar, A. Rana, M.S. Yadav, R.P. Pant, J. Magn. Magn. Mater. 320, 1729–1734 (2008)

    Article  Google Scholar 

  27. P. Priyadharsini, A. Pradeep, P.S. Rao, G. Chandrasekaran, Mater. Chem. Phys. 116(1), 207–213 (2009)

    Article  Google Scholar 

  28. R.D. Waldron, Phys. Rev. 99, 1727–1735 (1955)

    Article  Google Scholar 

  29. V. Naidu, S.K.A. Ahamed, M. Sheik Dawood, M. Suganthi, Int. J. Comput. Appl. 24(2), 0975–8887 (2011)

    Google Scholar 

  30. R.G. Kulkarni, H. Joshi, J. Solid State Chem. 64, 141 (1986)

    Article  Google Scholar 

  31. S. Dey, A. Roy, D. Das, J. Ghose, J. Magn. Magn. Mater. 270(1–2), 224–229 (2004)

    Article  Google Scholar 

  32. J. Smit, H.P.J. Wijn, Ferrites (Wiley, New York, 1959), p. 265

    Google Scholar 

  33. E. Rezlescu, N. Rezlescu, P.D. Popa, L. Rezlescu, C. Pasnicu, Phys. Status Solidi 162, 673–678 (1997)

    Article  Google Scholar 

  34. S.K.A. Ahamed Kandu Sahib, M. Suganthi, V. Naidu, S. Pandian, M. Sivabharathy, Int. J. ChemTech Res. 6(11), 4608–4614 (2014)

    Google Scholar 

  35. K. Muthuraman, S. Algarsamy, M. Ameena Banu, V. Naidu, Int. J. Comput. Appl. 32(3), 0975–8887 (2011)

    Google Scholar 

  36. B. Parvatheeswara Rao, O. Caltun, W.S. Cho, C.O. Kim, C. Kim, J. Magn. Magn. Mater. 310(2), e812–e814 (2007)

    Article  Google Scholar 

  37. Y.L.N. Murthy, I.V. Kasi Viswanath, T. Kondala Rao, Rajendrasingh, Int. J. ChemTech Res. 1(4), 1308–1311 (2009)

    Google Scholar 

  38. E.C. Stoner, E.P. Wohlfarth, Philos. Trans. R. Soc. Lond. 240, 599–642 (1948)

    Article  Google Scholar 

  39. J. Peng, M. Hojamberdiev, Y. Xu, B. Cao, J. Wang, H. Wu, J. Magn. Magn. Mater. 323, 133–138 (2011)

    Article  Google Scholar 

  40. K.K. Bharathi, J.A. Chelvane, G. Markandeyulu, J. Magn. Magn. Mater. 321, 3677–3680 (2009)

    Article  Google Scholar 

  41. R. Topkaya, J. Alloys Compd. 725, 1230–1237 (2017)

    Article  Google Scholar 

  42. A.M. Alsmadi, I. Bsoul, S.H. Mahmood, G. Alnawashi, K. Prokeš, K. Siemensmeyer, B. Klemke, H. Nakotte, J. Appl. Phys. 114, 243910–243918 (2013)

    Article  Google Scholar 

  43. A. Verma, A.K. Saxena, D. Dube, J. Magn. Magn. Mater. 263, 228–234 (2003)

    Article  Google Scholar 

  44. C.G. Koops, Phys. Rev. 83, 121–126 (1951)

    Article  Google Scholar 

  45. S.S. Jadhav, S.E. Shirsath, B.G. Toksha, S.M. Patange, D.R. Shengule, K.M. Jadhav, Phys. B 405(12), 2610–2614 (2010)

    Article  Google Scholar 

  46. K. Iwauchi, J. Appl. Phys. 10, 1520–1528 (1971)

    Article  Google Scholar 

  47. J.J. Green, J.S. Waugh, B.J. Healy, J. Appl. Phys. 35(3), 482 (1964)

    Article  Google Scholar 

  48. K.M. Batoo, S. Kumar, C.G. Lee, Alimuddin, J. Alloys Compd. 480, 596–604 (2009)

    Article  Google Scholar 

  49. J.C. Maxwell, Electricity and magnetism, vol. 1 (Oxford University Press, New York, 1973), p. 828

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Maria Lumina Sonia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sonia, M.M.L., Anand, S., Vinosel, V.M. et al. Effect of lattice strain on structural, magnetic and dielectric properties of sol–gel synthesized nanocrystalline Ce3+ substituted nickel ferrite. J Mater Sci: Mater Electron 29, 15006–15021 (2018). https://doi.org/10.1007/s10854-018-9639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9639-2

Navigation