Skip to main content

Advertisement

Log in

Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Tin (Sn)-doped zinc oxide (ZnO) nanorod arrays (TZO) were synthesized onto aluminum-doped ZnO-coated glass substrate via a facile sonicated sol–gel immersion method for humidity sensor applications. These nanorod arrays were grown at different Sn concentrations ranging from 0.6 to 3 at.%. X-ray diffraction patterns showed that the deposited TZO arrays exhibited a wurtzite structure. The stress/strain condition of the ZnO film metamorphosed from tensile strain/compressive stress to compressive strain/tensile stress when the Sn concentrations increased. Results indicated that 1 at.% Sn doping of TZO, which has the lowest tensile stress of 0.14 GPa, generated the highest conductivity of 1.31 S cm−1. In addition, 1 at.% Sn doping of TZO possessed superior sensitivity to a humidity of 3.36. These results revealed that the optimum performance of a humidity-sensing device can be obtained mainly by controlling the amount of extrinsic element in a ZnO film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.A. Blank, L.P. Eksperiandova, K.N. Belikov, Recent trends of ceramic humidity sensors development: a review. Sens. Actuator B-Chem. 228, 416–442 (2016)

    Article  Google Scholar 

  2. K. Narimani, F.D. Nayeri, M. Kolahdouz, P. Ebrahimi, Fabrication, modeling and simulation of high sensitivity capacitive humidity sensors based on ZnO nanorods. Sens. Actuator B-Chem. 224, 338–343 (2016)

    Article  Google Scholar 

  3. L. Gu, K. Zheng, Y. Zhou, J. Li, X. Mo, G.R. Patzke, G. Chen, Humidity sensors based on ZnO/TiO2 core/shell nanorod arrays with enhanced sensitivity. Sens. Actuator B-Chem. 159, 1–7 (2011)

    Article  Google Scholar 

  4. J. Herrán, I. Fernández, E. Ochoteco, G. Cabañero, H. Grande, The role of water vapour in ZnO nanostructures for humidity sensing at room temperature. Sens. Actuator B-Chem. 198, 239–242 (2014)

    Article  Google Scholar 

  5. S.S. Batool, Z. Imran, M. Israr Qadir, M. Usman, H. Jamil, M.A. Rafiq, M.M. Hassan, M. Willander, Comparative analysis of Ti, Ni, and Au electrodes on characteristics of TiO2 nanofibers for humidity sensor application. J. Mater. Sci. Technol. 29, 411–414 (2013)

    Article  Google Scholar 

  6. V.K. Tomer, S. Duhan, A facile nanocasting synthesis of mesoporous Ag-doped SnO2 nanostructures with enhanced humidity sensing performance. Sens. Actuator B-Chem. 223, 750–760 (2016)

    Article  Google Scholar 

  7. E. Modaresinezhad, S. Darbari, Realization of a room-temperature/self-powered humidity sensor, based on ZnO nanosheets. Sens. Actuators B 237, 358–366 (2016)

    Article  Google Scholar 

  8. G. Neri, A. Bonavita, S. Galvagno, N. Donato, A. Caddemi, Electrical characterization of Fe2O3 humidity sensors doped with Li+, Zn2+ and Au3+ ions. Sens. Actuator B-Chem. 111–112, 71–77 (2005)

    Article  Google Scholar 

  9. M.H. Mamat, M.F. Malek, N.N. Hafizah, M.N. Asiah, A.B. Suriani, A. Mohamed, N. Nafarizal, M.K. Ahmad, M. Rusop, Effect of oxygen flow rate on the ultraviolet sensing properties of zinc oxide nanocolumn arrays grown by radio frequency magnetron sputtering. Ceram. Int. 42, 4107–4119 (2016)

    Article  Google Scholar 

  10. S.T. Navale, V.V. Jadhav, K.K. Tehare, R.U.R. Sagar, C.S. Biswas, M. Galluzzi, W. Liang, V.B. Patil, R.S. Mane, F.J. Stadler, Solid-state synthesis strategy of ZnO nanoparticles for the rapid detection of hazardous Cl2. Sens. Actuator B-Chem. 238, 1102–1110 (2017)

    Article  Google Scholar 

  11. N. Irawati, H.A. Rahman, H. Ahmad, S.W. Harun, A PMMA microfiber loop resonator based humidity sensor with ZnO nanorods coating. Measurement 99, 128–133 (2017)

    Article  Google Scholar 

  12. M.H. Mamat, M.F. Malek, N.N. Hafizah, Z. Khusaimi, M.Z. Musa, M. Rusop, Fabrication of an ultraviolet photoconductive sensor using novel nanostructured, nanohole-enhanced, aligned aluminium-doped zinc oxide nanorod arrays at low immersion times. Sens. Actuator B-Chem. 195, 609–622 (2014)

    Article  Google Scholar 

  13. C.-Y. Huang, J.-H. Lai, Efficient polymer light-emitting diodes with ZnO nanoparticles and interpretation of observed sub-bandgap turn-on phenomenon. Org. Electron. 32, 244–249 (2016)

    Article  Google Scholar 

  14. R.K. Chava, M. Kang, Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloy. Compd. 692, 67–76 (2017)

    Article  Google Scholar 

  15. C.J. Lin, S.-J. Liao, L.-C. Kao, S.Y.H. Liou, Photoelectrocatalytic activity of a hydrothermally grown branched Zno nanorod-array electrode for paracetamol degradation. J. Hazard. Mater. 291, 9–17 (2015)

    Article  Google Scholar 

  16. Y. Dou, F. Wu, C. Mao, L. Fang, S. Guo, M. Zhou, Enhanced photovoltaic performance of ZnO nanorod-based dye-sensitized solar cells by using Ga doped ZnO seed layer. J. Alloy. Compd. 633, 408–414 (2015)

    Article  Google Scholar 

  17. M.M. Yusoff, M.H. Mamat, M.F. Malek, A.B. Suriani, A. Mohamed, M.K. Ahmad, S.A.H. Alrokayan, H.A. Khan, M. Rusop, Growth of titanium dioxide nanorod arrays through the aqueous chemical route under a novel and facile low-cost method. Mater. Lett. 164, 294–298 (2016)

    Article  Google Scholar 

  18. Z. Yu, H. Li, Y. Qiu, X. Yang, W. Zhang, N. Xu, J. Sun, J. Wu, Size-controllable growth of ZnO nanorods on Si substrate. Superlattices Microstruct. 101, 469–479 (2017)

    Article  Google Scholar 

  19. R. Taheri Ghahrizjani, M.H. Yousefi, Effects of three seeding methods on optimization of temperature, concentration and reaction time on optical properties during growth ZnO nanorods. Superlattices Microstruct. 112, 10–19 (2017)

    Article  Google Scholar 

  20. A.S. Ismail, M.H. Mamat, M.M. Yusoff, M.F. Malek, A.S. Zoolfakar, R.A. Rani, A.B. Suriani, A. Mohamed, M.K. Ahmad, M. Rusop, Enhanced humidity sensing performance using Sn-Doped ZnO nanorod Array/SnO2 nanowire heteronetwork fabricated via two-step solution immersion. Mater. Lett. 210, 258–262 (2018)

    Article  Google Scholar 

  21. E.S. Babu, S.K. Hong, Effect of indium concentration on morphology of ZnO nanostructures grown by using CVD method and their application for H2 gas sensing. Superlattices Microstruct. 82, 349–356 (2015)

    Article  Google Scholar 

  22. M.H. Mamat, N.N. Hafizah, M. Rusop, Fabrication of thin, dense and small-diameter zinc oxide nanorod array-based ultraviolet photoconductive sensors with high sensitivity by catalyst-free radio frequency magnetron sputtering. Mater. Lett. 93, 215–218 (2013)

    Article  Google Scholar 

  23. B. Wu, Y. Zhang, Z. Shi, X. Li, X. Cui, S. Zhuang, B. Zhang, G. Du, Different defect levels configurations between double layers of nanorods and film in ZnO grown on c-Al2O3 by MOCVD. J. Lumines. 154, 587–592 (2014)

    Article  Google Scholar 

  24. A.S. Ismail, M.H. Mamat, N.D. Md., M.F. Sin, A.S. Malek, A.B. Zoolfakar, A. Suriani, M.K. Mohamed, M. Ahmad, Rusop, Fabrication of hierarchical Sn-doped ZnO nanorod arrays through sonicated sol–gel immersion for room temperature, resistive-type humidity sensor applications. Ceram. Int. 42, 9785–9795 (2016)

    Article  Google Scholar 

  25. T. Zhao, Y. Fu, Y. Zhao, L. Xing, X. Xue, Ga-doped ZnO nanowire nanogenerator as self-powered/active humidity sensor with high sensitivity and fast response. J. Alloy. Compd. 648, 571–576 (2015)

    Article  Google Scholar 

  26. H.-S. Hong, G.-S. Chung, Controllable growth of oriented ZnO nanorods using Ga-doped seed layers and surface acoustic wave humidity sensor. Sens. Actuator B-Chem. 195, 446–451 (2014)

    Article  Google Scholar 

  27. C. Moditswe, C.M. Muiva, A. Juma, Highly conductive and transparent Ga-doped ZnO thin films deposited by chemical spray pyrolysis. Optik 127, 8317–8325 (2016)

    Article  Google Scholar 

  28. R. Shabannia, Synthesis and characterization of Cu-doped ZnO nanorods chemically grown on flexible substrate. J. Mol. Struct. 1118, 157–160 (2016)

    Article  Google Scholar 

  29. Z. Ye, T. Wang, S. Wu, X. Ji, Q. Zhang, Na-doped ZnO nanorods fabricated by chemical vapor deposition and their optoelectrical properties. J. Alloy. Compd. 690, 189–194 (2017)

    Article  Google Scholar 

  30. C. Supatutkul, S. Pramchu, A.P. Jaroenjittichai, Y. Laosiritaworn, Density functional theory investigation of surface defects in Sn-doped ZnO. Surf. Coat. Technol. 298, 53–57 (2016)

    Article  Google Scholar 

  31. K. Soonjae, N. Sekwon, J. Haseok, K. Sunho, L. Byunghoon, Y. Jaehyun, K. Hyoungsub, L. Hoo-Jeong, Effects of Sn doping on the growth morphology and electrical properties of ZnO nanowires. Nanotechnology 24, 065703 (2013)

    Article  Google Scholar 

  32. X. Zhou, T. Lin, Y. Liu, C. Wu, X. Zeng, D. Jiang, Y. Zhang, T. Guo, Structural, optical, and improved field-emission properties of tetrapod-shaped Sn-doped ZnO nanostructures synthesized via thermal evaporation. ACS Appl. Mater. Interfaces 5, 10067–10073 (2013)

    Article  Google Scholar 

  33. A.A. Hendi, R.H. Alorainy, F. Yakuphanoglu, Humidity sensing characteristics of Sn doped Zinc oxide based quartz crystal microbalance sensors. J. Sol-Gel. Sci. Technol. 72, 559–564 (2014)

    Article  Google Scholar 

  34. S. Luo, Y. Shen, Z. Wu, M. Cao, F. Gu, L. Wang, Enhanced ethanol sensing performance of mesoporous Sn-doped ZnO. Mater. Sci. Semicond. Process. 41, 535–543 (2016)

    Article  Google Scholar 

  35. N. Chahmat, T. Souier, A. Mokri, M. Bououdina, M.S. Aida, M. Ghers, Structure, microstructure and optical properties of Sn-doped ZnO thin films. J. Alloy. Compd. 593, 148–153 (2014)

    Article  Google Scholar 

  36. D. Zhu, T. Hu, Y. Zhao, W. Zang, L. Xing, X. Xue, High-performance self-powered/active humidity sensing of Fe-doped ZnO nanoarray nanogenerator. Sens. Actuator B-Chem. 213, 382–389 (2015)

    Article  Google Scholar 

  37. T. Ates, C. Tatar, F. Yakuphanoglu, Preparation of semiconductor ZnO powders by sol–gel method: humidity sensors. Sens. Actuator A-Phys. 190, 153–160 (2013)

    Article  Google Scholar 

  38. M.H. Mamat, M.Z. Sahdan, Z. Khusaimi, A.Z. Ahmed, S. Abdullah, M. Rusop, Influence of doping concentrations on the aluminum doped zinc oxide thin films properties for ultraviolet photoconductive sensor applications. Opt. Mater. 32, 696–699 (2010)

    Article  Google Scholar 

  39. M. Ajili, M. Castagné, N.K. Turki, Study on the doping effect of Sn-doped ZnO thin films. Superlattices Microstruct. 53, 213–222 (2013)

    Article  Google Scholar 

  40. H. Wang, R. Bhattacharjee, I.M. Hung, L. Li, R. Zeng, Material characteristics and electrochemical performance of Sn-doped ZnO spherical-particle photoanode for dye-sensitized solar cells. Electrochim. Acta 111, 797–801 (2013)

    Article  Google Scholar 

  41. R. Deng, X. Zhang, E. Zhang, Y. Liang, Z. Liu, H. Xu, S. Hark, Planar defects in Sn-doped single-crystal ZnO nanobelts. J. Phys. Chem. C 111, 13013–13015 (2007)

    Article  Google Scholar 

  42. M.F. Malek, M.H. Mamat, Z. Khusaimi, M.Z. Sahdan, M.Z. Musa, A.R. Zainun, A.B. Suriani, N.D. Md Sin, S.B. Abd Hamid, M. Rusop, Sonicated sol–gel preparation of nanoparticulate ZnO thin films with various deposition speeds: The highly preferred c-axis (002) orientation enhances the final properties. J. Alloy. Compd. 582, 12–21 (2014)

    Article  Google Scholar 

  43. M.F. Malek, M.Z. Sahdan, M.H. Mamat, M.Z. Musa, Z. Khusaimi, S.S. Husairi, N.D. Md Sin, M. Rusop, A novel fabrication of MEH-PPV/Al:ZnO nanorod arrays based ordered bulk heterojunction hybrid solar cells. Appl. Surf. Sci. 275, 75–83 (2013)

    Article  Google Scholar 

  44. T. Jan, J. Iqbal, M. Ismail, Q. Mansoor, A. Mahmood, A. Ahmad, Eradication of multi-drug resistant bacteria by Ni doped ZnO nanorods: structural, raman and optical characteristics. Appl. Surf. Sci. 308, 75–81 (2014)

    Article  Google Scholar 

  45. S.C. Navale, I.S. Mulla, Photoluminescence and gas sensing study of nanostructured pure and Sn doped ZnO. Mater. Sci. Eng. C 29, 1317–1320 (2009)

    Article  Google Scholar 

  46. M. Khuili, N. Fazouan, H.A. El Makarim, G. El Halani, E.H. Atmani, Comparative first principles study of ZnO doped with group III elements. J. Alloy. Compd. 688, 368–375 (2016)

    Article  Google Scholar 

  47. A.D. Acharya, S. Moghe, R. Panda, S.B. Shrivastava, M. Gangrade, T. Shripathi, D.M. Phase, V. Ganesan, Growth and characterization of nano-structured Sn doped ZnO. J. Mol. Struct. 1022, 8–15 (2012)

    Article  Google Scholar 

  48. M. Gao, X. Wu, J. Liu, W. Liu, The effect of heating rate on the structural and electrical properties of sol–gel derived Al-doped ZnO films. Appl. Surf. Sci. 257, 6919–6922 (2011)

    Article  Google Scholar 

  49. R. Ghosh, D. Basak, S. Fujihara, Effect of substrate-induced strain on the structural, electrical, and optical properties of polycrystalline ZnO thin films. J. Appl. Phys. 96, 2689–2692 (2004)

    Article  Google Scholar 

  50. D. Fang, K. Lin, T. Xue, C. Cui, X. Chen, P. Yao, H. Li, Influence of Al doping on structural and optical properties of Mg–Al co-doped ZnO thin films prepared by sol–gel method. J. Alloy. Compd. 589, 346–352 (2014)

    Article  Google Scholar 

  51. M.F. Malek, M.H. Mamat, M.Z. Musa, T. Soga, S.A. Rahman, S.A.H. Alrokayan, H.A. Khan, M. Rusop, Metamorphosis of strain/stress on optical band gap energy of ZAO thin films via manipulation of thermal annealing process. J. Lumines. 160, 165–175 (2015)

    Article  Google Scholar 

  52. M. Jlassi, I. Sta, M. Hajji, H. Ezzaouia, Effect of nickel doping on physical properties of zinc oxide thin films prepared by the spray pyrolysis method. Appl. Surf. Sci. 301, 216–224 (2014)

    Article  Google Scholar 

  53. E.A. Davis, N.F. Mott, electrical and transparent properties of amorphous semiconductor. Philos. Mag. 22, 903–920 (1970)

    Article  Google Scholar 

  54. A. Yildiz, T. Serin, E. Öztürk, N. Serin, Barrier-controlled electron transport in Sn-doped ZnO polycrystalline thin films. Thin Solid Films 522, 90–94 (2012)

    Article  Google Scholar 

  55. S.D. Senol, O. Ozturk, C. Terzioğlu, Effect of boron doping on the structural, optical and electrical properties of ZnO nanoparticles produced by the hydrothermal method. Ceram. Int. 41, 11194–11201 (2015)

    Article  Google Scholar 

  56. S. Aydemir, S. Karakaya, The effect of Al on structure, morphology and optical properties of network texture ZnO thin films synthesized using the sol–gel method. Optik 126, 1735–1739 (2015)

    Article  Google Scholar 

  57. F.Z. Bedia, A. Bedia, N. Maloufi, M. Aillerie, F. Genty, B. Benyoucef, Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique. J. Alloy. Compd. 616, 312–318 (2014)

    Article  Google Scholar 

  58. S.K. O’Leary, S. Zukotynski, J.M. Perz, Disorder and optical absorption in amorphous silicon and amorphous germanium. J. Non-Cryst. Solids 210, 249–253 (1997)

    Article  Google Scholar 

  59. C. Shin, S.M. Iftiquar, J. Park, Y. Kim, S. Baek, J. Jang, M. Kim, J. Jung, Y. Lee, S. Kim, J. Yi, Optimization of intrinsic hydrogenated amorphous silicon deposited by very high-frequency plasma-enhanced chemical vapor deposition using the relationship between Urbach energy and silane depletion fraction for solar cell application. Thin Solid Films 547, 256–262 (2013)

    Article  Google Scholar 

  60. S. Ilican, M. Caglar, Y. Caglar, Sn doping effects on the electro-optical properties of sol gel derived transparent ZnO films. Appl. Surf. Sci. 256, 7204–7210 (2010)

    Article  Google Scholar 

  61. A. Santhosh Kumar, K.K. Nagaraja, H.S. Nagaraja, Effect of Sn doping on structural, optical, electrical and wettability properties of oriented ZnO nanorod arrays. J. Mater. Sci.: Mater. Electron. 24, 3812–3822 (2013)

    Google Scholar 

  62. R.-D. Sun, A. Nakajima, A. Fujishima, T. Watanabe, K. Hashimoto, Photoinduced surface wettability conversion of ZnO and TiO2 thin films. J. Phys. Chem. B 105, 1984–1990 (2001)

    Article  Google Scholar 

  63. F.J. Sheini, D.S. Joag, M.A. More, Electrochemical synthesis of Sn doped ZnO nanowires on zinc foil and their field emission studies. Thin Solid Films 519, 184–189 (2010)

    Article  Google Scholar 

  64. A. Slassi, N. lakouari, Y. Ziat, Z. Zarhri, A. Fakhim Lamrani, E.K. Hlil, A. Benyoussef, Ab initio study on the electronic, optical and electrical properties of Ti-, Sn- and Zr-doped ZnO. Solid State Commun. 218, 45–48 (2015)

    Article  Google Scholar 

  65. S. Salam, M. Islam, A. Akram, Sol–gel synthesis of intrinsic and aluminum-doped zinc oxide thin films as transparent conducting oxides for thin film solar cells. Thin Solid Films 529, 242–247 (2013)

    Article  Google Scholar 

  66. A. Yildiz, S. Uzun, N. Serin, T. Serin, Influence of grain boundaries on the figure of merit of undoped and Al, In, Sn doped ZnO thin films for photovoltaic applications. Scr. Mater. 113, 23–26 (2016)

    Article  Google Scholar 

  67. V. Shelke, B.K. Sonawane, M.P. Bhole, D.S. Patil, Electrical and optical properties of transparent conducting tin doped ZnO thin films. J. Mater. Sci.: Mater. Electron. 23, 451–456 (2012)

    Google Scholar 

  68. N.D. Md Sin, M.H. Mamat, M.F. Malek, M. Rusop, Fabrication of nanocubic ZnO/SnO2 film-based humidity sensor with high sensitivity by ultrasonic-assisted solution growth method at different Zn:Sn precursor ratios. Appl. Nanosci. 4, 829–838 (2014)

    Article  Google Scholar 

  69. N. Ye, J. Qi, Z. Qi, X. Zhang, Y. Yang, J. Liu, Y. Zhang, Improvement of the performance of dye-sensitized solar cells using Sn-doped ZnO nanoparticles. J. Power Sources 195, 5806–5809 (2010)

    Article  Google Scholar 

  70. C. Lai, X. Wang, Y. Zhao, H. Fong, Z. Zhu, Effects of humidity on the ultraviolet nanosensors of aligned electrospun ZnO nanofibers. RSC Adv. 3, 6640–6645 (2013)

    Article  Google Scholar 

  71. C.-L. Hsu, K.-C. Chen, T.-Y. Tsai, T.-J. Hsueh, Fabrication of gas sensor based on p-type ZnO nanoparticles and n-type ZnO nanowires. Sens. Actuator B-Chem. 182, 190–196 (2013)

    Article  Google Scholar 

  72. C.-L. Hsu, H.-H. Li, T.-J. Hsueh, Water- and humidity-enhanced UV detector by using p-type La-doped ZnO nanowires on flexible polyimide substrate. ACS Appl. Mater. Interfaces 5, 11142–11151 (2013)

    Article  Google Scholar 

  73. G.H. Zhang, P.Y. Wang, X.Y. Deng, Y. Chen, D.J. Gengzang, X.L. Wang, W.J. Chen, CTAB-assisted synthesis of 3D Sn doped ZnO nanostructures with enhanced acetone sensing performance. Mater. Lett. 162, 265–268 (2016)

    Article  Google Scholar 

  74. W. Zang, W. Wang, D. Zhu, L. Xing, X. Xue, Humidity-dependent piezoelectric output of Al-ZnO nanowire nanogenerator and its applications as a self-powered active humidity sensor. RSC Adv. 4, 56211–56215 (2014)

    Article  Google Scholar 

  75. S. Jagtap, K.R. Priolkar, Evaluation of ZnO nanoparticles and study of ZnO–TiO2 composites for lead free humidity sensors. Sens. Actuator B-Chem. 183, 411–418 (2013)

    Article  Google Scholar 

  76. P.M. Faia, J. Libardi, C.S. Louro, Effect of V2O5 doping on p- to n-conduction type transition of TiO2:WO3 composite humidity sensors. Sens. Actuator B-Chem. 222, 952–964 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the ASEAN-India Research & Training Fellowship (IMRC/AISTDF/R&D/P-1/2017). The authors also would like to thank the Institute of Research Management and Innovation (IRMI) of UiTM and the Ministry of Higher Education of Malaysia for their financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Mamat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismail, A.S., Mamat, M.H., Shameem Banu, I.B. et al. Modulation of Sn concentration in ZnO nanorod array: intensification on the conductivity and humidity sensing properties. J Mater Sci: Mater Electron 29, 12076–12088 (2018). https://doi.org/10.1007/s10854-018-9314-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9314-7

Navigation