Skip to main content
Log in

Deposition and characterization of ultrathin intrinsic zinc oxide (i-ZnO) films by radio frequency (RF) sputtering for propane gas sensing application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An enhancing awareness about the hazardous gaseous environment in the domestic and industrial sectors is on the rise across the globe. Thus, the necessity to efficiently detect and monitor the potentially hazardous gases, mainly that are toxic and flammable, is widely being researched. Propane, a liquefied petroleum gas (LPG), is highly inflammable and explosive when it comes in contact with an ignition source. Therefore, it is highly important to develop an upgraded propane gas sensor that could be used in various places such as household appliances, liquid natural gas (LNG) and petrochemical industry, automobile and aerospace industry, and relevant sectors where the propane is used. In the present work, ultrathin intrinsic zinc oxide (i-ZnO) films were deposited by the radio frequency (RF) sputtering technique at various working pressures (2–8 mTorr) at constant 100 W for gas sensing applications. Thus, deposited films were characterized by various techniques such as X-ray diffractometry (XRD), field-emission scanning electron microscopy (FESEM), ultra-violet spectrophotometry (UV–Vis), and finally by a gas sensing technique for their structural, morphological, optical, and sensing characteristics. XRD pattern confirms the formation of hexagonal phase of ZnO with a preferred orientation along the (002) plane. The bandgap of the deposited films was determined to be between 3.19 and 3.21 eV as measured from UV–Vis spectra. The scanning electron micrographs revealed the formation of vertically aligned and cross-linked nanowall structures at lower working pressures. Finally, the gas sensing properties of the films were exclusively studied, at various operating temperatures (100, 200, and 300 °C), for different propane gas concentrations. The film deposited at 2 mTorr exhibited a gas sensitivity of 0.998 and almost equal to 30 s of response time and 35 s of recovery time at an operating temperature of 300 °C for the propane gas concentration of 500 ppm, which implies the potentiality of using this film as a propane gas sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Soloman, Sensor Handbook, 2nd edn. (Mc Graw-Hill, Newyork, 2010), pp. 1–9

    Google Scholar 

  2. K. Koren, M. Kuhl, Sens. Actuators B 210, 124 (2015)

    Article  Google Scholar 

  3. M. Benetti, D. Cannata, F. Di Pietrantonio, E. Verona, P. Verardi, N. Scarisoreanu, D. Matei, G. Dinescu, A. Moldovan, M. Dinescu, Superlattices Microstruct. 39, 366 (2006)

    Article  Google Scholar 

  4. N.T. Nguyen, Flow Meas. Instrum. 8, 7 (1997)

    Article  Google Scholar 

  5. S. Fericean, R. Droxler, IEEE Sens. J. 7, 1538 (2007)

    Article  Google Scholar 

  6. S. Krishan, S. Chakravarthy, A. Rangal, E. Prokhorov, G. Barcenas, R. Esparza, M. Meyyappan, RSC Adv. 6, 20102 (2016)

    Article  Google Scholar 

  7. S. Yokogawa, S.P. Burgos, H. Atwater, Nano Lett. 12, 4349 (2012)

    Article  Google Scholar 

  8. V.V. Sinitsin, A.L. Shestakov, Meas. Sci. Technol. 28, 094002 (2017)

    Article  Google Scholar 

  9. P.P. Sahay, J. Mater. Sci. 40, 4383 (2005)

    Article  Google Scholar 

  10. J. Watson, Sens. Actuators 5, 29 (1984)

    Article  Google Scholar 

  11. C. Hagleither, A. Hiertemann, D. Lange, A. Kummer, N. Kerness, O. Brand, H. Baltes, Nature 15, 293 (2001)

    Article  Google Scholar 

  12. Z. Hoherakova, F. Opekar, Sens. Actuators B 97, 379 (2004)

    Article  Google Scholar 

  13. J.S. Do, R.-Y. Shieh, Sens. Actuators B 37, 19 (1996)

    Article  Google Scholar 

  14. M.C. Horrillo, M.J. Fernandez, J.L. Fontecha, I. Sayago, M. Garcia, M. Aleixandre, J. Gutierrez, I. Gracia, C. Cane, Sens. Actuators B 118, 356 (2006)

    Article  Google Scholar 

  15. R. Ionescu, A. Hoel, C.G. Granqvist, E. Llobet, P. Heszler, Sens. Actuators B 104, 132 (2005)

    Article  Google Scholar 

  16. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Sensors 10, 2088 (2010)

    Article  Google Scholar 

  17. http://www.npga.org/files/public/Facts_About_Propane.pdf. Accessed 12 September 2017

  18. http://www.pgane.org/consumer-safety/large-tanks/. Accessed 12 September 2017

  19. V.K. Jayaraman, A. Maldonado, M. Olvera, Mater. Lett. 157, 169 (2015)

    Article  Google Scholar 

  20. A. Sivapunniyam, N. Wiromrat, M.T.Z. Myint, J. Dutta, Sens. Actuators B 157, 232 (2011)

    Article  Google Scholar 

  21. H. Gomez-Pozos, J.L. Gonzalez-Vidal, G.A. Torres, J.R. Baez, Sensors 13, 3432 (2013)

    Article  Google Scholar 

  22. A.K. Radzimska, T. Jesionowski, Materials 7, 2833 (2014)

    Article  Google Scholar 

  23. T. Inukai, M. Matsuoka, K. Ono, Thin Solid Films 257, 22 (1995)

    Article  Google Scholar 

  24. I. Sayago, M. Aleixandre, A. Martinez, M.J. Fernandez, J.P. Santos, J. Gutierrez, I. Gracia, M.C. Horrillo, Synth. Mater. 148, 37 (2005)

    Article  Google Scholar 

  25. S.S. Shinde, P.S. Shinde, Y.W. Oh, D. Haranath, C.H. Bhosale, K.Y. Rajpure, Appl. Surf. Sci. 258, 9969 (2012)

    Article  Google Scholar 

  26. S. Chirakkara, S.B. Krupanidhi, J. Lumin. 131, 1649 (2011)

    Article  Google Scholar 

  27. M. Houabes, S. Bernik, C. Talhi, A. Bui, Ceram. Int. 31, 781 (2005)

    Article  Google Scholar 

  28. F.S. Hickernell, Proc. IEEE 64, 631, (1976)

    Article  Google Scholar 

  29. R. Ondo-Ndong, G. Ferblantier, M.A. Kalfioui, A. Boyer, A. Foucaran, J. Cryst. Growth 225, 130 (2003)

    Article  Google Scholar 

  30. E.J. Ibanga, C. Le Luyer, J. Mugnier, Mater. Chem. Phys. 80, 490 (2003)

    Article  Google Scholar 

  31. M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Appl. Catal. B 63, 305 (2006)

    Article  Google Scholar 

  32. B.D. Ahn, S.H. Oh, D.U. Hong, D.H. Shin, A. Moujoud, H.J. Kim, J. Cryst. Growth 310, 3303 (2008)

    Article  Google Scholar 

  33. A.P. Caricato, A. Creti, A. Luches, Laser 21, 588 (2011)

    Article  Google Scholar 

  34. S. Pearton, D. Norton, K. Ip, Y. Heo, T. Steiner, Superlattices Microstruct. 34, 3 (2003)

    Article  Google Scholar 

  35. M. Dwivedi, J. Bhargava, A. Sharma, V. Vyas, G. Eranna, IEEE Sens. J. 14, 577 (2014)

    Article  Google Scholar 

  36. C.M. Ghimbeu, J. Schoonman, M. Lumbreras, M. Siadat, Appl. Surf. Sci. 253, 7483 (2007)

    Article  Google Scholar 

  37. P. Samarasekara, N.U.S. Yapa, N.T.R.N. Kumara, M.V.K. Perera, Bull. Mater. Sci. 30, 113 (2007)

    Article  Google Scholar 

  38. P. Bhattacharya, P.K. Basu, H. Saha, S. Basu, Sens. Actuators B 124, 62 (2007)

    Article  Google Scholar 

  39. V.M. Latyshev, T.O. Berestok, A.S. Opanasyuk, A.S. Kornyushchenko, Solid State Sci. 67, 109 (2017)

    Article  Google Scholar 

  40. S.T. Shishiyanu, T.S. Shishiyanu, O.I. Lupan, Sens. Actuators B 107, 379 (2005)

    Article  Google Scholar 

  41. X. Niu, W. Du, Sens. Actuators B 99, 405 (2004)

    Article  Google Scholar 

  42. S. Wei, Y. Yu, M. Zhou, Mater. Lett. 64, 2284 (2010)

    Article  Google Scholar 

  43. M.C. Shin, G.T. Lay, H.L. Wei, H.S. Yen, H.H. Min, Sensors 6, 1420 (2006)

    Article  Google Scholar 

  44. R.K. Nath, S.S. Nath, K. Sunar, J. Appl. Sci. Technol. 3, 85 (2012)

    Google Scholar 

  45. H. Pozos, J. Vidal, G. Torres, J. baez, M. Alejo, L. Castaneda, Sensors 13, 3432 (2013)

    Article  Google Scholar 

  46. M.A. Basyooni, M. Shaban, A.M. El Sayed, Sci. Rep. 7, 41716 (2017)

    Article  Google Scholar 

  47. C.S. Prajapati, S.N. Pandey, P.P. Sahay, Phys. B 406, 2684 (2011)

    Article  Google Scholar 

  48. M. Dhingra, N.K. Singh, S. Shrivastara, P.S. Kumar, S. Annapoorni, Sens. Actuators A 190, 68 (2013)

    Article  Google Scholar 

  49. P.K. Kannan, R. Saraswathi, J.B.B. Rayappan, Ceram. Int. 40, 13115 (2014)

    Article  Google Scholar 

  50. E. Baudet, M. Sergent, P. Nemec, C. Cardinaud, E. Rinnert, K. Michel, L. Jouany, B. Buureau, V. Nazabal, Sci. Rep. 7, 3500 (2017)

    Article  Google Scholar 

  51. S.B. Krupanidhi, M. Sayer, J. Appl. Phys. 56, 3308 (1984)

    Article  Google Scholar 

  52. G.A. Kumar, M.V.R. Reddy, K.N. Reddy, ICMST 73, 012133 (2015)

    Google Scholar 

  53. W.L. Dang, Y.Q. Fu, J.K. Luo, A.J. Flewitt, W.I. Milne, Superlattices Microstruct. 42, 89 (2007)

    Article  Google Scholar 

  54. S. Maniv, A. Zangvil, J. Appl. Phys. 47, 2787 (1978)

    Article  Google Scholar 

  55. U. Seetawan, S. Jugsujinda, T. Seetawan, A. Ratchasin, C. Euvananont, C. Thanachayanont, P. chainaronk, Mater. Sci. Appl. 2, 1302 (2011)

    Google Scholar 

  56. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Heliyon 3, e285 (2017)

    Article  Google Scholar 

  57. B.E. Warren, X-ray Diffraction, 1st edn. (Dover, Newyork, 1969), pp. 85–92

    Google Scholar 

  58. G. Escalante, H. Juarez, P. Fernandez, Adv. Powder Technol. 28, 23 (2017)

    Article  Google Scholar 

  59. H. Park, S.Q. Hussain, S. Velumani, A.H.T. Le, S. Ahn, S. Kim, J. Yi, Mat. Sci. Semicond. Process. 37, 29 (2015)

    Article  Google Scholar 

  60. A.P. Nayak, A.M. Katzenmeyer, Y. Gosho, B. Tekin, M. Islam, Appl. Phys. A 107, 661 (2012)

    Article  Google Scholar 

  61. M. Jiang, K. Tang, X. Yan, J. Photonics Energy. 2, 028502-1 (2012)

    Article  Google Scholar 

  62. G. Korotcenkov, Mater. Sci. Eng. 139, 1 (2007)

    Article  Google Scholar 

  63. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III, Phys. Status Solidi B 252, 1700 (2015)

    Article  Google Scholar 

  64. A. Yu, J. Qian, H. Pan, Y. Cui, M. Xu, L. Tu, Q. Chai, X. Zhou, Sens. Actuator B 158, 9 (2011)

    Article  Google Scholar 

  65. N. Han, L. Chai, Q. Wang, Y. Tian, P. Deng, Y. Chen, Sens. Actuator B 147, 525 (2010)

    Article  Google Scholar 

  66. J.Q. He, J. Yin, D. Liu, L.X. Zhang, F.S. Cai, L.J. Bie, Sens. Actuator B 182, 170 (2013)

    Article  Google Scholar 

  67. S.H. Kim, G.I. Shim, S.Y. Choi, J. Alloys Compd. 698, 77 (2017)

    Article  Google Scholar 

  68. J.F. Chang, H.H. Kuo, I.C. Leu, M.H. Hon, Sens. Actuators B 84, 258 (2002)

    Article  Google Scholar 

  69. T.V.K. Karthik, M. Olvera, A. Maldonado, H. Gomez Pozos, Sensors 16, 1283 (2016)

    Article  Google Scholar 

  70. S.P. Chang, C.H. Wen, S.J. Chang, Electron Mater. Lett. 10, 693 (2014)

    Article  Google Scholar 

  71. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Sens. Actuators B 160, 580 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the financial support from the project, Consejo Nacional de Ciencia y Tecnología-Secretaría de Energía (CONACyT—SENER)—263043 and El Centro Mexicano de Innovacion en Energia Solar (CEMIE-Sol P-55). G. Regmi wishes to thank CONACyT for the doctoral scholarship. Authors also want to acknowledge the following for their technical support: Jaime Vega Perez, Miguel Avendaño (profilometry), Francisco Alvarado Cesar (UV–Vis spectroscopy), Adolfo Tavira (XRD), and Miguel Luna (Gas Sensing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Velumani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Regmi, G., Rohini, M., Reyes-Figueroa, P. et al. Deposition and characterization of ultrathin intrinsic zinc oxide (i-ZnO) films by radio frequency (RF) sputtering for propane gas sensing application. J Mater Sci: Mater Electron 29, 15682–15692 (2018). https://doi.org/10.1007/s10854-018-9166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9166-1

Navigation