Skip to main content
Log in

Effect of deposition time on sputtered ZnO thin films and their gas sensing application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nowadays, advanced industrialization and population growth have led to increasing the environmental related issues. This paper reports the effect of deposition time on ZnO films deposited on to the glass substrate by using rf magnetron sputtering technique and their further use for gas sensing applications. Herein, deposition time is considered to be changed from 300 s, 800 s (S1, S2). The thickness of deposited films lies in the range of 130–180 nm. The synthesized films were characterized by various techniques in terms of structural, morphological, optical and gas sensing properties. The typical crystal size of ZnO films was found to be in the range of 15–27 nm. FESEM analysis revealed the growth of nanospheres was lies in the range of 80–120 nm. Fourier transform infrared spectroscopy confirmed the ZnO bonding located at a wavelength of 430 cm−1. The average optical transmittance of the film was about 90–95% in the visible range. The optical band gap of ZnO films was decreased from 3.31 to 3.29 eV. The detailed characterization study showed 800 s is an optimum deposition time for good optoelectronic properties. For gas sensing application, highest sensitivity was obtained at operating temperature of 205 °C. Prepared films have a quick response and fast recovery time in the range of 128 s and 163 s respectively. These response and recovery time characteristics were explained by valence ion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Singh, S.B. Shrivastava, D. Jain et al., Effect of indium doping on zinc oxide films prepared by chemical spray pyrolysis technique. Bull. Mater. Sci. 33, 581–587 (2011). https://doi.org/10.1007/s12034-010-0089-6

    Article  Google Scholar 

  2. Y.I. Alivov, Fabrication and characterization of n -ZnO Õ p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl. Phys. Lett. 83, 4719–4721 (2003). https://doi.org/10.1063/1.1632537

    Article  CAS  Google Scholar 

  3. R. Pietruszka, B.S. Witkowski, S. Gieraltowska et al., New efficient solar cell structures based on zinc oxide nanorods. Sol. Energy Mater. Sol. Cells 143, 99–104 (2015). https://doi.org/10.1016/j.solmat.2015.06.042

    Article  CAS  Google Scholar 

  4. F. Teng, L. Zheng, K. Hu, H. Chen, Y. Li, Z. Zhang, X. Fang, A surface oxide thin layer of copper nanowires enhanced the UV selective response of a ZnO film photodetector. J. Mater. Chem. C 4, 8416–8421 (2016). https://doi.org/10.1039/C6TC02901A

    Article  CAS  Google Scholar 

  5. H. Lin, S.M. Zhou, J.H. Zhou et al., Structural and optical properties of a-plane ZnO thin films synthesized on gamma-LiAlO(2) (302) substrates by low-pressure metal-organic chemical vapor deposition. Thin Solid Films 516, 6079–6082 (2008). https://doi.org/10.1016/j.tsf.2007.10.128

    Article  CAS  Google Scholar 

  6. S. Bhatia, N. Verma, A. Mahajan, R.K. Bedi, Characterization of ZnO films based sensors prepared by different techniques. Appl. Mech. Mater. 772, 50–54 (2015). https://doi.org/10.4028/www.scientific.net/AMM.772.50

    Article  Google Scholar 

  7. W.-J. Chen, W.-L. Liu, S.-H. Hsieh, Y.-G. Hsu, Synthesis of ZnO:Al transparent conductive thin films using sol-gel method. Procedia Eng. 36, 54–61 (2012). https://doi.org/10.1016/j.proeng.2012.03.010

    Article  CAS  Google Scholar 

  8. N.V. Kaneva, C.D. Dushkin, Preparation of nanocrystalline thin films of ZnO by sol-gel dip coating. Bulg. Chem. Commun. 43, 259–263 (2011)

    CAS  Google Scholar 

  9. S. Bhatia, N. Verma, R.K. Bedi, Optical application of Er-doped ZnO nanoparticles for photodegradation of direct red-31 dye. Opt. Mater. 62, 392–398 (2016). https://doi.org/10.1016/j.optmat.2016.10.013

    Article  CAS  Google Scholar 

  10. N. Srinatha, Y.S. No, V.B. Kamble et al., Effect of RF power on the structural, optical and gas sensing properties of RF-sputtered Al doped ZnO thin films. RSC Adv 6, 9779–9788 (2016). https://doi.org/10.1039/C5RA22795J

    Article  CAS  Google Scholar 

  11. L. Saikia, D. Bhuyan, M. Saikia, B. Malakar, D.K. Dutta, P. Sengupta, Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Appl. Catal. A Gen. 490, 42–49 (2015). https://doi.org/10.1016/j.apcata.2014.10.053

    Article  CAS  Google Scholar 

  12. N. Nafarizal, Precise control of metal oxide thin films deposition in magnetron sputtering plasmas for high performance sensing device fabrication. Procedia Chem. 20, 93–97 (2016). https://doi.org/10.1016/j.proche.2016.07.016

    Article  CAS  Google Scholar 

  13. M. Dwivedi, A. Bhargava, A. Sharma, V. Vyas, G. Eranan, CO sensor using ZnO thin film derived by RF magnetron sputtering technique. IEEE Sens. 14, 1577–1582 (2014). https://doi.org/10.1109/JSEN.2014.2298879

    Article  CAS  Google Scholar 

  14. X. Peng, Z. Wang, Y. Song et al., Structural and photoluminescent properties of ZnO films deposited by radio frequency reactive sputtering. Sci. China Ser. G: Phys. Mech. Astron. 50, 281–286 (2007). https://doi.org/10.1007/s11433-007-0007-0

    Article  CAS  Google Scholar 

  15. R.O. Ndong, H.M. Omanda, P. Soulounganga, Effect of target to substrate distance on the rf magnetron sputtered ZnO thin films. Int. J. Mater. Sci. 17, 122–126 (2013)

    Google Scholar 

  16. M. Becerril, H. Silva-López, A. Guillén-Cervantes, O. Zelaya-Ángel, Aluminum-doped ZnO polycrystalline films prepared by co-sputtering of a ZnO-Al target. Rev. Mex. Fis. 60, 27–31 (2014)

    CAS  Google Scholar 

  17. J.-W. Hoon, K.-Y. Chan, J. Krishnasamy, T.-Y. Tou, Zinc oxide thin films fabricated with direct current magnetron sputtering deposition technique. Physics 1328, 235–237 (2011). https://doi.org/10.1063/1.3573740

    Article  CAS  Google Scholar 

  18. S. Bhatia, N. Verma, R.K. Bedi, Applied Surface Science Sn-doped ZnO nanopetal networks for efficient photocatalytic degradation of dye and gas sensing applications. Appl. Surf. Sci. 407, 495–502 (2017). https://doi.org/10.1016/j.apsusc.2017.02.205

    Article  CAS  Google Scholar 

  19. X. Fang, L. Hu, C. Ye, L. Zhang, One-dimensional inorganic semiconductor nanostructures: a new carrier for nanosensors. Pure Appl. Chem. 82, 2185–2198 (2010)

    Article  CAS  Google Scholar 

  20. V. Kumar, V. Kumar, S. Som et al., Effect of annealing on the structural, morphological and photoluminescence properties of ZnO thin films prepared by spin coating. J. Colloid Interface Sci. 428, 8–15 (2014). https://doi.org/10.1016/j.jcis.2014.04.035

    Article  CAS  Google Scholar 

  21. S. Bhatia, N. Verma, R.K. Bedi, Varied sensing characteristics of in- doped ZnO films prepared by sol gel spin coating technique. Indian J Pure Appl Phys 13, 54–58 (2017)

    Google Scholar 

  22. N.K. Ponon, D.J.R. Appleby, E. Arac et al., Effect of deposition conditions and post deposition anneal on reactively sputtered titanium nitride thin films. Thin Solid Films 578, 31–37 (2015). https://doi.org/10.1016/j.tsf.2015.02.009

    Article  CAS  Google Scholar 

  23. A. Taabouche, A. Bouabellou, F. Kermiche et al., Effect of substrates on the properties of ZnO thin films grown by pulsed laser deposition. Adv. Mater. Phys. Chem. 3, 209–213 (2013). https://doi.org/10.4236/ampc.2013.34031

    Article  CAS  Google Scholar 

  24. S. Bhatia, N. Verma, R.K. Bedi, Effect of aging time on gas sensing properties and photocatalytic efficiency of dye on in-Sn co-doped ZnO nanoparticles. Mater. Res. Bull. (2016). https://doi.org/10.1016/j.materresbull.2016.12.011

    Article  Google Scholar 

  25. S. Bhatia, N. Verma, R.K. Bedi, Ethanol gas sensor based upon ZnO nanoparticles prepared by different techniques. Results Phys. (2017). https://doi.org/10.1016/j.rinp.2017.02.008

    Article  Google Scholar 

  26. S. Bensmaine, B. Benyoucef, Effect of the temperature on ZnO thin films deposited by r.f. magnetron. Phys. Procedia. 55, 144–149 (2014). https://doi.org/10.1016/j.phpro.2014.07.021

    Article  CAS  Google Scholar 

  27. G.S. Hikku, R.K. sharma, R.V. William, P. Thiruramanathan, Al-Sn doped ZnO thin film nanosensor for monitoring NO2 concentration. J. Taibah Univ. Sci. (2016). https://doi.org/10.1016/j.jtusci.2016.02.002

    Article  Google Scholar 

  28. S. Bhatia, N. Verma, R. Kumar, Morphologically-dependent photocatalytic and gas sensing application of Dy-doped ZnO nanoparticles. J. Alloy Compd. 726, 1274–1285 (2017). https://doi.org/10.1016/j.jallcom.2017.08.048

    Article  CAS  Google Scholar 

  29. B. Yuliarto, S. Julia, M. Iqbal, M.F. Ramadhani, N. Nugraha, et al (2015) The effect of tin addition to ZnO nanosheet thin films for ethanol and isopropyl alcohol sensor applications. J. Eng. Technol. Sci. 47:76–91. https://doi.org/10.5614/j.eng.technol.sci.2015.47.1.6

    Article  CAS  Google Scholar 

  30. R.S. Reddy, A. Sreedhar, A.S. Reddy, S. Uthanna, Effect of film thickness on the structural morphological and optical properties of nanocrystalline ZnO films formed by RF magnetron sputtering. Adv. Mater. Lett. 3, 239–245 (2012). https://doi.org/10.5185/amlett.2012.3329

    Article  CAS  Google Scholar 

  31. D.S. Dhawale, D.P. Dubal, A.M. More et al., Room temperature liquefied petroleum gas (LPG) sensor. Sens. Actuators B: Chem. 147, 488–494 (2010). https://doi.org/10.1016/j.snb.2010.02.063

    Article  CAS  Google Scholar 

  32. N.C. Net, E. Engineering, U. Teknologi et al., (2015) Study on doping effect of Sn doped ZnO thin films for gas sensing application. In IEEE Student Conference on Research and Development, pp. 435–440

  33. B. Radha, R. Rathi. K.C. Lalithambika, A. Thayumanavan, K. Ravichandran. S. Sriram, Effect of Fe doping on the photocatalytic activity of ZnO nanoparticles: experimental and theoretical investigations. J. Mater. Sci.: Mater. Electron. 29, 13474–13482 (2018)

    CAS  Google Scholar 

  34. Y. Ning, Z. Zhnag, F. Teng, X. Fang (2018) Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small 14, 1703754, https://doi.org/10.1002/smll.201703754

    Article  CAS  Google Scholar 

  35. S. Bhatia, R.K. Bedi, Morphological, electrical and optical properties of zinc oxide films grown on different substrates by spray pyrolysis technique. Nanostruct. Thin Films III 7766, 776610–776610 (2010). https://doi.org/10.1117/12.863878

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to U.G.C, New Delhi for providing financial assistance for carrying out this project (F. No. 42-770/2013). Thanks due to the Director, R.S.I.C, Panjab University Chandigarh for providing SEM, XRD facility and IKGPTU Kapurthala for Research Cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonik Bhatia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhatia, S., Verma, N. & Aggarwal, M. Effect of deposition time on sputtered ZnO thin films and their gas sensing application. J Mater Sci: Mater Electron 29, 18136–18143 (2018). https://doi.org/10.1007/s10854-018-9925-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9925-z

Navigation