Skip to main content

Advertisement

Log in

TiO2/reduced graphene oxide composite based nano-petals for supercapacitor application: effect of substrate

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present study, graphene oxide is synthesized using modified Hummers method. The X-ray diffraction spectroscopy (XRD), Fourier transform Raman spectroscopy (FT-Raman), energy-dispersive spectroscopy (EDS) and scanning electron microscopic (SEM) study is used to understand the successful synthesis of graphene oxide using the modified Hummers method. Secondly, the TiO2/RGO composite has developed using co-precipitation method and structural, morphological, electrochemical and supercapacitive properties are studied. The TiO2/RGO nano-composite shows the porous nanopetals like nature. The thin films of TiO2/RGO composite are developed using the doctor blade method on steel, and the copper substrate and the electrochemical and supercapacitive properties are studied. The TiO2/RGO composite thin films deposited on steel substrate are showing relatively less charge transfer resistance, and better specific capacitance than thin film deposited copper substrate. The TiO2/RGO thin films deposited on steel substrate shows maximum specific capacitance 192 Fg−1 at a scan rate of 5 mVs−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Winter, R.J. Brodd, Chem. Rev. 104, 4245–4270 (2004)

    Article  Google Scholar 

  2. G.M. Lohar, S.T. Jadhav, M.V. Takale, R.A. Patil, Y.R. Ma, M.C. Rath, V.J. Fulari, J. Colloid Interface Sci. 458, 136–146 (2015)

    Article  Google Scholar 

  3. A. Ghosh, E.J. Ra, M. Jin, H.-K. Jeong, T.H. Kim, C. Biswas, Y.H. Lee, Adv. Funct. Mater. 21, 2541–2547 (2011)

    Article  Google Scholar 

  4. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797–828 (2012)

    Article  Google Scholar 

  5. G.M. Lohar, S.T. Jadhav, B.P. Relekar, R.A. Patil,Y, R. Ma, V.J. Fulari, Optik, 158, 53–63 (2018)

    Article  Google Scholar 

  6. J. Yang, S. Gunasekaran, Carbon 51, 36–44 (2013)

    Article  Google Scholar 

  7. A. Ramadoss, G.S. Kim, S.J. Kim, Cryst. Eng. Comm. 15, 10222–10229 (2013)

    Article  Google Scholar 

  8. J.R. Miller, P. Simon, Science 321, 651 (2008)

    Article  Google Scholar 

  9. B. Xu, S. Yue, Z. Sui, X. Zhang, S. Hou, G. Cao, Y. Yang, Energy Environ. Sci. 4, 2826–2830 (2011)

    Article  Google Scholar 

  10. W. Wang, S. Guo, I. Lee, K. Ahmed, J. Zhong, Z. Favors, F. Zaera, M. Ozkan, C.S. Ozkan, Sci. Rep. 4, 4452 (2014)

    Article  Google Scholar 

  11. A.K. Mishra, S. Ramaprabhu, J. Phys. Chem. C 115, 14006–14013 (2011)

    Article  Google Scholar 

  12. C. Xiang, M. Li, M. Zhi, A. Manivannan, N. Wu, J. Mater. Chem. 22, 19161–19167 (2012)

    Article  Google Scholar 

  13. X. Liu, Y. Shi, Y. Dong, H. Li, Y. Xia, H. Wang, N. J. Chem. 41, 13382–13390 (2017)

    Article  Google Scholar 

  14. A. Mondal, S. Maiti, K. Singha, S. Mahanty, A.B. Panda, J. Mater. Chem. A 5, 23853–23862 (2017)

    Article  Google Scholar 

  15. H. Xiao, W. Guo, B. Sun, M. Pei, G. Zhou, Electrochim. Acta 190, 104–117 (2016)

    Article  Google Scholar 

  16. J. Bahadura, K. Pal, Phys. E 90, 98–103 (2017)

    Article  Google Scholar 

  17. C. Zhao, P. Ju, S. Wang, Y. Zhang, S. Min, X. Qian, Electrochim. Acta 218, 216–227 (2016)

    Article  Google Scholar 

  18. J. Shang, L. Ma, J. Li, W. Ai, T. Yu, G.G. Gurzadyan, Sci. Rep. 2, 1–8 (2012)

    Article  Google Scholar 

  19. S. Liu, J. Tian, L. Wang, X. Sun, J. Nanopart. Res. 13, 4539–4548 (2011)

    Article  Google Scholar 

  20. K. Krishnamoorthy, M. Veerapandian, R. Mohan, S.J. Kim, Appl. Phys. A 106, 501–506 (2012)

    Article  Google Scholar 

  21. M. Baraket, S.G. Walton, Z. Wei, E.H. Lock, J.T. Robinson, P. Sheehan, Carbon 48, 3382–3390 (2010)

    Article  Google Scholar 

  22. N.A. Kumar, H.-J. Choi, Y.R. Shin, Dong Wook Chang, Liming Dai, Jong-Beom Baek. ACS Nano 6, 1715–1723 (2012)

    Article  Google Scholar 

  23. M.S.A.S. Shah, A.R. Park, K. Zhang, J.H. Park, P.J. Yoo, ACS Appl. Mater. Interfaces 4, 3893–3901 (2012)

    Article  Google Scholar 

  24. K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Kasetsart, J. Nat. Sci. 42, 357–361 (2008)

    Google Scholar 

  25. E. Filippo, C. Carlucci, A.L. Capodilupo, P. Perulli, F. Conciauro, G.A. Corrente, G. Gigli, G. Ciccarell, Mater. Res. 18, 473–481 (2015)

    Article  Google Scholar 

  26. E. Filippo, A.L. Capodilupo, C. Carlucci, P. Perulli, F. Conciauro, G.A. Corrente, B.F. Scremin, G. Gigli, G. Ciccarella, Nanomater. Nanotechnol. 5, 31 (2015)

    Article  Google Scholar 

  27. A. Morais, C. Longo, J.R. Araujo, M. Barroso, J.R. Durrant, A.F. Nogueira, Phys. Chem. Chem. Phys. 18, 2608–2616 (2016)

    Article  Google Scholar 

  28. P. Zheng, T. Liu, Y. Su, L. Zhang, S. Guo, Sci. Rep. 6, 36580 (2016)

    Article  Google Scholar 

  29. P. Ju, Z. Zhu, X. Shao, S. Wang, C. Zhao, X. Qian, C. Zhao, J. Mater. Chem. A 5, 18777–18785 (2017)

    Article  Google Scholar 

  30. Y. Agrawal, G. Kedawat, P. Kumar, J. Dwivedi, V.N. Singh, R.K. Gupta, B.K. Gupta, Sci. Rep. 5 11612 (2015)

    Article  Google Scholar 

  31. B.P. Relekar, S.A. Mahadik, S.T. Jadhav, A.S. Patil, R.R. Koli, G.M. Lohar, V.J. Fulari, J. Electron. Mater. 47, 2731–2738 (2018)

    Google Scholar 

  32. J. Shen, B. Yan, M. Shi, H. Ma, N. Li, M. Ye, J. Mater. Chem. 21, 3415–3421 (2011)

    Article  Google Scholar 

  33. H. Wang, X. Zhao, X. Li, Z. Wang, C. Liu, Z. Lu, W. Zhang, G. Cao, J. Mater. Chem. A 5, 25056–25063 (2017)

    Article  Google Scholar 

  34. S.T. Jadhav, S.J. Rajoba, S.A. Patil, S.H. Han, L.D. Jadhav, J. Electron. Mater. 45, 1 (2016)

    Article  Google Scholar 

  35. O. Akhavan, E. Ghaderi, J. Phys. Chem. C 113, 20214–20220 (2009)

    Article  Google Scholar 

  36. S. Palanisamy, S. Chen, R. Sarawathi, Sens. Actuat B 166, 372–377 (2012)

    Article  Google Scholar 

  37. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Carbon 45, 1558–1565 (2007)

    Article  Google Scholar 

  38. R. Mukkabla, M. Deepa, A.K. Srivastava, Electrochim. Acta 164, 171–181 (2015)

    Article  Google Scholar 

  39. J. Kim, W. Khoh, B. Wee, J. Hong, RSC Adv. 5, 9904–9911 (2015)

    Article  Google Scholar 

  40. G.S. Gund, D.P. Dubal, B.H. Patil, S.S. Shinde, C.D. Lokhande, Electrochim. Acta 92, 205–215 (2013)

    Article  Google Scholar 

  41. G.M. Lohar, S.T. Jadhav, B.P. Relekar, R.A. Patil, Y.R. Ma, V.J. Fulari, Optik 158, 53–63 (2018)

    Article  Google Scholar 

  42. A.S. Patil, G.M. Lohar, V.J. Fulari, J Mater Sci-Mater El 27, 9550–9557 (2016)

    Article  Google Scholar 

  43. G.M. Lohar, H.D. Dhaygude, B.P. Relekar, M.C. Rath, V.J. Fulari, Ionics 22, 1451–1460 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Lohar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulari, A.V., Ramana Reddy, M.V., Jadhav, S.T. et al. TiO2/reduced graphene oxide composite based nano-petals for supercapacitor application: effect of substrate. J Mater Sci: Mater Electron 29, 10814–10824 (2018). https://doi.org/10.1007/s10854-018-9146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9146-5

Navigation