Skip to main content
Log in

Temperature-Dependent Photoluminescence of Graphene Oxide

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Graphene oxide thin films have been deposited by spray pyrolysis using graphene oxide powder prepared by modified Hummers method. These thin films were characterized by different physico-chemical techniques. The x-ray diffraction studies revealed the structural properties of GO (graphene oxide) while the Raman spectrum showed the presence of D and G and two-dimensional bands. The D/G intensity ratio for spray-deposited GO film is 1.10. The x-ray photoelectron spectroscopy showed 67% and 33% atomic percentages of carbon and oxygen, respectively. The ratio of O1s/C1s was found to be 0.49. The temperature-dependent photoluminescence of GO thin film and GO solution showed a blue emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Hsieh, J. Wei, J. Lin, and W. Chen, Cat. Com. 16, 220 (2011).

    Article  Google Scholar 

  2. S. Pei and H. Cheng, Carbon 50, 3210 (2011).

    Article  Google Scholar 

  3. Dale A.C. Brownson, D.K. Kampouris, and C.E. Banks, J. Power Sources 196, 4873 (2011).

    Article  Google Scholar 

  4. O. Akhavan, Carbon 48, 509 (2010).

    Article  Google Scholar 

  5. F. Cui and X. Zhang, J. Solid State Electrochem. 17, 167 (2013).

    Article  Google Scholar 

  6. M. Hilder, B. Winther-Jensen, D. Li, M. Forsyth, and D.R. MacFarlane, Phys. Chem. Chem. Phys. 13, 9187 (2011).

    Article  Google Scholar 

  7. X. Dong, C.Y. Su, W. Zhang, J. Zhao, Q. Ling, W. Huang, P. Chen, and L.J. Li, Phys. Chem. Chem. Phys. 12, 2164 (2010).

    Article  Google Scholar 

  8. L.D. Jadhav, A.P. Jamale, S.R. Bharadwaj, S. Varma, and C.H. Bhosale, Appl. Surf. Sci. 258, 9501 (2012).

    Article  Google Scholar 

  9. G.M. Lohar, S.K. Shinde, and V.J. Fulari, J Semicond. 35, 1 (2014).

    Google Scholar 

  10. M. Seredycha, C. Petita, A.V. Tamashauskyb, and T.J. Bandosz, Carbon 47, 445 (2009).

    Article  Google Scholar 

  11. T. Chen, B. Zeng, J.L. Liu, J.H. Dong, X.Q. Liu, Z. Wu, X.Z. Yang, and Z.M. Li, J. Phy. Conf. Ser. 188, 012051 (2009).

    Article  Google Scholar 

  12. Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H.M. Cheng, J. Am. Chem. Soc. 3, 411 (2009).

    Google Scholar 

  13. J.P. Rourke, P.A. Pandey, J.J. Moore, M. Bates, I.A. Kinloch, R.J. Young, and N.R. Wilson, Angew. Chem. Int. Ed. 50, 3173 (2011).

    Article  Google Scholar 

  14. C.T. Hsieh and W.Y. Chen, Surf. Coat. Technol. 205, 4554 (2011).

    Article  Google Scholar 

  15. M. Wojtoniszak, X. Chen, R.J. Kalenczuk, A. Wajda, J. Lapczuk, M. Kurzewski, M. Drozdzik, P.K. Chu, and E. Borowiak-Palen, Colloid Surf. B 89, 79 (2012).

    Article  Google Scholar 

  16. C. Rodriguez-Gonzalez, O.V. Kharissova, A.L. Martinez-Hernandez, V.M. Castano, and C. Velasco-Santos, Dig. J. Nanomater. Bios. 8, 127 (2013).

    Google Scholar 

  17. S. Some, Y. Kim, Y. Yoon, H.J. Yoo, S. Lee, Y. Park, and H. Lee, Sci. Rep. 3, 1929 (2013).

    Google Scholar 

  18. J. Shang, L. Ma, J. Li, W. Ai, T. Yu, and G.G. Gurzadyan, Sci. Rep. 2, 792 (2012).

    Article  Google Scholar 

  19. S. Zhang, Y. Li, and N. Pan, J. Power Sources 206, 476 (2012).

    Article  Google Scholar 

  20. J. Wang, K. Feng, H. Zhang, B. Chen, Z. Li, Q. Meng, L. Zhang, C. Tung, and L. Wu, Beilstein J. Nanotechnol. 5, 1167 (2014).

    Article  Google Scholar 

  21. Y. Liu, M. Guan, L. Feng, S. Deng, J. Bao, S.Y. Xie, Z. Chen, R. Huang, and L. Zheng, Nanotechnology 24, 025604 (2013).

    Article  Google Scholar 

  22. R. Hawaldar, P. Merino, M.R. Correia, I. Bdikin, J. Gracio, J. Mendez, J.A. Martin-Gago, and M.K. Singh, Sci. Rep. 2, 682 (2012).

    Article  Google Scholar 

  23. Y.J. Oh, J.J. Yoo, Y. Kim, J.K. Yoon, H.N. Yoon, J. Kim, and S.B. Park, Electrochim. Acta 116, 118 (2014).

    Article  Google Scholar 

  24. P. Si, S. Ding, X. Lou, and D. Kim, RSC Adv. 1, 1271 (2011).

    Article  Google Scholar 

  25. G.M. Lohar, S.T. Jadhav, M.V. Takale, R.A. Patil, Y.R. Ma, M.C. Rath, and V.J. Fulari, J. Colloid Interface Sci. 458, 136 (2015).

    Article  Google Scholar 

  26. G.M. Lohar, S.K. Shinde, M.C. Rath, and V.J. Fulari, Mater. Sci. Semicond. Process. 26, 548 (2014).

    Article  Google Scholar 

  27. G. Eda and M. Chhowalla, Adv. Mater. 22, 2392 (2010).

    Article  Google Scholar 

Download references

Acknowledgement

The authors are very grateful to the Defence Research and Development Organization (DRDO), New Delhi, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. D. Jadhav.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jadhav, S.T., Rajoba, S.J., Patil, S.A. et al. Temperature-Dependent Photoluminescence of Graphene Oxide. J. Electron. Mater. 45, 379–385 (2016). https://doi.org/10.1007/s11664-015-4096-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4096-7

Keywords

Navigation