Skip to main content
Log in

Structural, optical and magnetic properties of Pr doped CeO2 nanoparticles synthesized by citrate–nitrate auto combustion method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, pure and Pr doped CeO2 nanoparticles in the form of Ce1−xPrxO2 (x = 0, 0.05, 0.10, 0.15 and 0.20) were synthesized by citrate–nitrate auto combustion method. The combustion derived products were annealed at 700 °C and characterized by X-ray diffraction (XRD) studies, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-diffuse reflectance spectroscopy (UV-DRS), Fourier transform-infrared spectroscopy (FT-IR), Fourier Transform-Raman Spectroscopy (FT-Raman), photoluminescence analysis (PL) and vibrating sample magnetometer (VSM) studies. XRD studies revealed that all the samples exhibited single phase cubic fluorite structure. SEM images displayed that pure and Pr doped CeO2 nanoparticles had irregular flaky shape with few agglomerations. TEM results show the proper formation of cubic fluorite structure of nanoparticles. UV-DRS spectroscopy results showed the red shifting in the absorption band edge with increased Pr concentration. The vibrational band assignment of pure and Pr doped CeO2 nanoparticles were analyzed by FT-IR spectroscopy. FT-Raman studies revealed increased defect concentration for the doped samples compared with pure CeO2. PL intensities of doped CeO2 nanoparticles decrease compared with pure CeO2 nanoparticles due to the evolution of non-radioactive oxygen vacancies in the structure. VSM results depicted the suppression of ferromagnetic behavior on Pr doping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Morimoto, H. Tomonaga, A. Mitani, Ultraviolet ray absorbing coatings on glass for automobiles. Thin Solid Films 351, 61–65 (1999)

    Article  Google Scholar 

  2. S. Armini, S. De Messemaeker, C.M. Whelan, M. Mionpour, K. Maex, Composite polymer core-ceria sheet abrasive particles during oxide CMP: a defective study. J. Electrochem. Soc. 155, H653–H666 (2008)

    Article  Google Scholar 

  3. G. RangaRao, P. Fornasiero, R. Di Monte, J. Kaspar, G. Vlaic, G. Balducci, S. Meriani, G. Gubitosa, A. Cremona, M. Grazianiy, Reduction of No over partially reduced metal-loaded CeO2-ZrO2 solid solutions. J. Catal. 162, 1–9 (1996)

    Article  Google Scholar 

  4. P. Fornasiero, G. Balducci, R. Di Monte, J. Kaspar, V. Sergo, G. Gubitosa, A. Ferrero, M. Graziani, Modification of the redox behavior of CeO2 induced by structural doping with ZrO2. J. Catal. 164, 173–183 (1996)

    Article  Google Scholar 

  5. Y. Zhai, S. Zhang, H. Pang, Preparation, characterization and photocatalytic activity of CeO2 nanocrystalline using ammonium bicarbonate as precipitant. Mater. Lett. 61, 1863–1866 (2007)

    Article  Google Scholar 

  6. P. Borker, A.V. Salker, Solar assisted photocatalytic degradation of naphthol blue black dye using Ce1−x Mn x O2. Mater. Chem. Phys. 103, 366–370 (2007)

    Article  Google Scholar 

  7. M.A.F. Oksuzomern, G. Donmez, V. Sariboga, T.G. Altincekic, Microstructure and ionic conductivity properties of gadolinia doped ceria (GdxCe1−xO2−x/2) electrolytes for intermediate temperature SOFCs prepared by the polyol method. Ceram. Int. 39, 7305–7315 (2013)

    Article  Google Scholar 

  8. S. Yuan-Qiang, Z. Huai-Wu, W. Qi-Ye, Z. Hao, J.Q. Xiao, Additional Y3+doping effect on ferromagnetism of Ce0.97Co0.03O2−δcompounds. Chin. Phys. Lett. 25, 1106–1109 (2008)

    Article  Google Scholar 

  9. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, Zener model description of ferromagnetism in Zinc-blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  Google Scholar 

  10. A. Tiwari, M. Bhosle, S. Ramachandran, N. Sudhakar, J. Narayan, S. Budak, A. Gupta, Ferromagnetism in Co doped CeO2: observation of a giant magnetic moment with a high Curie temperature. Appl. Phys. Lett. 88, 142511–142513 (2006)

    Article  Google Scholar 

  11. L.R. Shah, B. Ali, H. Zhu, W.G. Wang, Y.Q. Song, H.W. Zhang, S.I. Shah, J.Q. Xiao, Detailed study on the role of oxygen acancies in structural, magnetic and transport behavior of magnetic insulator: Co-CeO2. J. Phys. 21, 486004–4186013 (2009)

    Google Scholar 

  12. F. Abbas, T. Jan, J. Iqbal, M. Sajjad, H. Naqvi, Fe doping induced enhancement in room temperature ferromagnetism and selective cytotoxicity of CeO2 nanoparticles. Curr. Appl. Phys. 15, 1428–1434 (2015)

    Article  Google Scholar 

  13. E. Swatsitang, S. Phokha, S. Hunpratub, S. Maensiri, Characterization of Sm-doped CeO2 nanoparticles and their magnetic properties. Phys. B 485, 14–20 (2016)

    Article  Google Scholar 

  14. G.R. Li, D.L. Qu, L. Arurault, Y.X. Tong, Hierarchically porous Gd3+-doped CeO2 nanostructures for the remarkable enhancement of optical and magnetic properties. J. Phys. Chem. C 113, 1235–1241 (2009)

    Article  Google Scholar 

  15. N. Shehata, K. Meehan, M. Hudait, N. Jain, Control of oxygen vacancies and Ce3+ concentrations in doped ceria nanoparticles via the selection of lanthanide element. J. Nanopart. Res. 14, 1173–1183 (2013)

    Article  Google Scholar 

  16. X. Liu, S. Chen, X. Wang, Synthesis and photoluminescence of CeO2:Eu3+ phosphor powders. J. Lumin. 127, 650–654 (2007)

    Article  Google Scholar 

  17. J.H. Cho, M. Bass, S. Babu, J.M. Dowding, W.T. Self, S. Seal, Up conversion luminescence of Yb3+-Er3+ co doped CeO2nanocrystals with imaging applications. J. Lumin. 132, 743–749 (2012)

    Article  Google Scholar 

  18. L. Wang, F. Menga, K. Li, F. Lu, Characterization and optical properties of pole-like nano-CeO2 synthesized by a facile hydrothermal method. Appl. Surf. Sci. 286, 269–274 (2013)

    Article  Google Scholar 

  19. H. Guo, Green and red upconversion luminescence in CeO2:Er3+ powders produced by 785 nm laser. J. Solid State Chem. 180, 127–131 (2007)

    Article  Google Scholar 

  20. F.A. Al-Agel, E. Al-Arfaj, A.A. Al-Ghamdi, Y. Losovyj, L.M. Bronstein, W.E. Mahmoud, A novel recipe to improve the magnetic properties of Mn doped CeO2 as a room temperature ferromagnetic diluted metal oxide. J. Magn. Magn. Mater. 360, 73–79 (2014)

    Article  Google Scholar 

  21. M.S.M. Suan, M.R. Johan, T.C. Siang, Synthesis of Y3Ba5Cu8O18 superconductor powder by auto-combustion reaction: effects of citrate–nitrate ratio. Physica C 480, 75–78 (2012)

    Article  Google Scholar 

  22. S.R. Jain, K.C. Adiga, A new approach to thermochemical calculations of condensed fuel-oxide. Combust. Flame Vol. 40, 71–79 (1981)

    Article  Google Scholar 

  23. G.Q. Xie, M.F. Luo, M. He, P. Fang, J.M. Ma, Y.F. Ying, Z.L. Yan, An improved method for preparation of Ce0.8Pr0.2OY solid solution with nanoparticles smaller than 10 nm. J. Nanopart. Res. 9, 471–478 (2007)

    Article  Google Scholar 

  24. A.I.Y. Tok, S.W. Du, F.Y.C. Boey, W.K. Chong, Hydrothermal synthesis and characterization of rare earth doped ceria nanoparticles. Mater. Sci. Eng. A 466, 223–229 (2007)

    Article  Google Scholar 

  25. A.C. Cabral, L.S. Cavalcante, R.C. Deus, E. Longo, A.Z. Simões, F. Moura, Photoluminescence properties of praseodymium doped cerium oxide nanocrystals. Ceram. Int. 40, 4445–4453 (2014)

    Article  Google Scholar 

  26. P. Shuk, M. Greenblatt, Hydrothermal synthesis and properties of mixed conductors based on Ce1−xPrxO2−δ solid solutions. Solid State Ionics. 116, 217–223 (1999)

    Article  Google Scholar 

  27. K.A. Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, T.R. Rajasekaran, A.K. Arof, Investigations on acceptor (Pr3+) and donor (Nb5+) doped cerium oxide for the suitability of solid oxide fuel cell electrolytes. Ionics 22, 2461–2470 (2016)

    Article  Google Scholar 

  28. M.C. Dimri, H. Khanduri, H. Kooskora, J. Subbi, I. Heinmaa, A. Mere, J. Krustok, R. Stern, Ferromagnetism in rare earth doped cerium oxide bulk samples. Physica Status Solidi 209, 353–358 (2012)

    Article  Google Scholar 

  29. S.A. Hassanzadeh-Tabrizia, M. Mazaheri, M. Aminzare, S.K. Sadrnezhaad, Reverse precipitation synthesis and characterization of CeO2 nanopowder. J. Alloy. Compd. 491, 499–502 (2010)

    Article  Google Scholar 

  30. S. Colis, A. Bouaine, G. Schmerber, C. Ulhaq-Bouillet, A. Dinia, S. Choua, P. Turek, High-temperature ferromagnetism in Co-doped CeO2 synthesized by the coprecipitation technique. Phys. Chem. Chem. Phys. 14, 7256–7263 (2012)

    Article  Google Scholar 

  31. P. Patsalas, S. Logothetidis, L. Sygellou, S. Kennou, Structure-dependent electronic properties of nanocrystalline cerium oxide films. Phys. Rev. B 68, 035104 (2003)

    Article  Google Scholar 

  32. I.T. Liu, M.H. Hon, C.Y. Kuan, L.G. Teoh, Structure and optical properties of Ag/CeO2 nanocomposites. Appl. Phys. A 111, 1181–1186 (2013)

    Article  Google Scholar 

  33. S. Patil, S. Seal, Y. Guo, A. Schulte, J. Norwood, Role of trivalent La and Nd dopants in lattice distortion and oxygen vacancy generation in cerium oxide nanoparticles. Appl. Phys. Lett. 88, 243110 (2006)

    Article  Google Scholar 

  34. B. Choudhury, A. Choudhury, Ce3+ and oxygen vacancy mediated tuning of structural and optical properties of CeO2 nanoparticles. Mater. Chem. Phys. 131, 666–671 (2012)

    Article  Google Scholar 

  35. F.A. Mir, K.M. Batoo, I. Chatterjee, G.M. Bhat, Preparation and ac electrical characterizations of Cd doped SnO2 nanoparticles. J. Mater. Sci. 25, 1564–1570 (2014)

    Google Scholar 

  36. R. Tholkappiyan, K. Vishista, Combustion synthesis of Mg-Er ferrite nanoparticles: cation distribution and structural, optical and magnetic properties. Mater. Sci. Semicond. Process. 40, 631–642 (2015)

    Article  Google Scholar 

  37. A.K. Tripathi, M.C. Mathpal, P. Kumar, M.K. Singh, M.A.G. Soler, A. Agarwal, Structural, optical and photoconductivity of Sn and Mn doped TiO2 nanoparticles. J. Alloy. Compd. 622, 37–47 (2015)

    Article  Google Scholar 

  38. M. Zawadzki, Preparation and characterization of ceria nanoparticles by microwave-assisted solvothermal process. J. Alloy. Compd. 454, 347–351 (2008)

    Article  Google Scholar 

  39. T. Suzuki, I. Kosacki, H.U. Anderson, Electrical conductivity and lattice defects in nanocrystalline cerium oxide thin films. J. Am. Ceram. Soc. 84, 2007–2014 (2001)

    Article  Google Scholar 

  40. R. Kostic, S. Askrabic, Z.D. Mitrovic, Z.V. Popovic, Low-frequency Raman scattering from CeO2 nanoparticles. Appl. Phys. A Mater. Sci. Process. 90, 679–683 (2008)

    Article  Google Scholar 

  41. J.E. Spanier, R.D. Robinson, F. Zhang, S.W. Chan, I.P. Herman, Size-dependent properties of CeO2−y nanoparticles as studied by Raman scattering. Phys. Rev. B 64, 245407 (2001)

    Article  Google Scholar 

  42. W.F. Zhang, Y.L. He, M.S. Zhang, Z. Yin, Q. Chen, Raman scattering study on anatase TiO2 nanocrystals. J. Phys. D 33, 912–916 (2000)

    Article  Google Scholar 

  43. H.C. Choi, Y.M. Jung, S.B. Kim, Size effects in the Raman spectra of TiO2 nanoparticles. Vib. Spectrosc. 37, 33–38 (2005)

    Article  Google Scholar 

  44. V.V. Pushkarev, V.I. Kovalchuk, J.L. d’Itri, Probing defect sites on the CeO2 surface with dioxygen. J. Phys. Chem. B 108, 5341–5348 (2004)

    Article  Google Scholar 

  45. A. Kumar, S. Babu, A.S. Karakoti, A. Schulte, S. Seal, Luminescence properties of europium-doped cerium oxide nanoparticles: role of vacancy and oxidation states. Langmuir 25, 10998–11007 (2009)

    Article  Google Scholar 

  46. K.T. Suzuki, H.U. Anderson, P. Colomban, Raman scattering and lattice defects in nanocrystalline CeO2 thin films. Solid State Ion. 149, 99–105 (2002)

    Google Scholar 

  47. L. Wu, S. Dey, M. Gong, F. Liu, R.H. Castro, Surface segregation on manganese doped ceria nanoparticles and relationship with nanostability. J. Phys. Chem. C 118, 30187–30196 (2014)

    Article  Google Scholar 

  48. D. Manoharan, K. Vishista, Optical properties of nano-crystalline cerium dioxide synthesized by single step aqueous citrate-nitrate gel combustion method. Asian J. Chem. 25, 9045–9049 (2013)

    Google Scholar 

  49. K.A. Bhabu, J. Theerthagiri, J. Madhavan, T. Balu, G. Muralidharan, T.R. Rajasekaran, Cubic fluorite phase of samarium doped cerium oxide (CeO2)0.96Sm0.04 for solid oxide fuel cell electrolyte. J. Mater. Sci. 27, 1566–1577 (2015)

    Google Scholar 

  50. M.K. Chinnu, K.V. Anand, R.M. Kumar, T. Alagesan, R. Jayavel, Synthesis and enhanced electrochemical properties of Sm:CeO2 nanostructure by hydrothermal route. Mater. Lett. 113, 170–173 (2013)

    Article  Google Scholar 

  51. F. Abbas, T. Jana, J. Iqbala, I. Ahmad, M. Sajjad, H. Naqvi, M. Malikd, Facile synthesis of ferromagnetic Ni doped CeO2nanoparticles with enhanced anticancer activity. Appl. Surf. Sci. 357, 931–936 (2015)

    Article  Google Scholar 

  52. S. Samiee, E.K. Goharshadi, Effects of different precursors on size and optical properties of ceria nanoparticles prepared by microwave-assisted method. Mater. Res. Bull. 47, 1089–1095 (2012)

    Article  Google Scholar 

  53. G. Wang, Q. Mu, T. Chen, Y. Wang, Synthesis, characterization and photoluminescence of CeO2 nanoparticles by a facile method at room temperature. J. Alloy. Compd. 493, 202–207 (2010)

    Article  Google Scholar 

  54. S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, S. Maensiria, Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Mater. Chem. Phys. 115, 423–428 (2009)

    Article  Google Scholar 

  55. A.Z. Liu, J.X. Wang, C.R. He, H. Miao, Y. Zhang, W.G. Wang, Synthesis and characterization of Gd0.1Ce0.9O1.95nanopowder via an acetic-acrylic method. Ceram. Int. 39, 6229–6235 (2013)

    Article  Google Scholar 

  56. R. Tholkappiyan, A. Nirmalesh Naveen, S. Sumithra, K. Vishista, Investigation on spinel MnCo2O4 electrode material prepared via controlled and uncontrolled synthesis route for supercapacitor application. J. Mater. Sci. 50, 5833–5843 (2015)

    Article  Google Scholar 

  57. C. Binet, A. Badri, J.C. Lavalley, A spectroscopic characterization of the reduction of ceria from electronic transitions of intrinsic point defects. J. Phys. Chem. 98, 6392–6398 (1994)

    Article  Google Scholar 

  58. C. Ho, J.C. Yu, T. Kwong, A.C. Mak, S. Lai, Morphology-controllable synthesis of mesoporous CeO2 nano- and microstructures. Chem. Mater. 17, 4514–4522 (2005)

    Article  Google Scholar 

  59. R. Tholkappiyan, K. Vishista, Synthesis and characterization of barium zinc ferrite nanoparticles: working electrode for dye sensitized solar cell applications. Sol. Energy 106, 118–128 (2014)

    Article  Google Scholar 

  60. B. Choudhury, A. Choudhurya, Room temperature ferromagnetism in defective TiO2 nanoparticles: role of surface and grain boundary oxygen vacancies. J. Appl. Phys. 114, 203906 (2013)

    Article  Google Scholar 

  61. B. Choudhury, P. Chetri, A. Choudhury, Oxygen defects and formation of Ce3+ affecting the photocatalytic performance of CeO2 nanoparticles. RSC Adv. 4, 4663–4671 (2014)

    Article  Google Scholar 

  62. Y. Lei, L.D. Zhang, G.W. Meng, G.H. Li, X.Y. Zhang, C.H. Liang, W. Chen, S.X. Wang, Preparation and photoluminescence of highly ordered TiO2 nanowire arrays. Appl. Phys. Lett. 78, 1125 (2001)

    Article  Google Scholar 

  63. S. Gnanam, V. Rajendran, Synthesis of CeO2 or a-Mn2O3 nanoparticles via sol–gel process and their optical properties. J. Sol-Gel. Sci. Technol. 58, 62–69 (2011)

    Article  Google Scholar 

  64. Y.F. Huang, Y.B. Cai, D.K. Qiao, H. Liu, Morphology-controllable synthesis and characterization of CeO2 nanocrystals. Particuology 9, 170–173 (2011)

    Article  Google Scholar 

  65. A.H. Morshed, M.E. Moussa, S.M. Bedair, R. Leonard, S.X. Liu, N. El-Masry, Violet/blue emission from epitaxial cerium oxide films on silicon substrates. Appl. Phys. Lett. 70, 1647 (1997)

    Article  Google Scholar 

  66. F.M. Meng, L.N. Wang, J.B. Cui, Controllable synthesis and optical properties of nano-CeO2via a facile hydrothermal route. J. Alloy. Compd. 556, 102–108 (2013)

    Article  Google Scholar 

  67. W.M. Kwok, A.B. Djurisic, Y.H. Leung, W.K. Chan, D.L. Phillips, Time-resolved photoluminescence from ZnO nanostructures. Appl. Phys. Lett. 87, 223111 (2005)

    Article  Google Scholar 

  68. J.X. Duan, X.T. Huang, H. Wang, Q. Zhong, F.L. Sunand, X. He, Synthesis of porous ZnO micro-flakes via an integrated autoclave and pyrolysis process. Mater. Chem. Phys. 106, 181–186 (2007)

    Article  Google Scholar 

  69. F. Abbas, J. Iqbal, T. Jan, M. Sajjad, H. Naqvi, A. Gul, R. Abbasi, A. Mahmood, I. Ahmad, M. Ismail, Differential cytotoxicity of ferromagnetic Co doped CeO2 nanoparticles against neuroblastoma cancer cells. J. Alloy. Compd. 648, 1060–1066 (2015)

    Article  Google Scholar 

  70. V. Ferrari, A.M. Llois, V. Vildosola, Co-doped ceria: tendency towards ferromagnetism driven by oxygen vacancies. J. Phys. 22, 276002 (2010)

    Google Scholar 

  71. S.D. Yoon, Y. Chen, A. Yang, T.L. Goodrich, X. Zuo, D.A. Arena, K. Ziemer, C. Vittoria, V.G. Harris, Oxygen-defect-induced magnetism to 880 K in semi-conducting anatase TiO2−δ films. J. Phys. 18, L355-L361 (2006)

    Google Scholar 

  72. S. Phokha, J. Klinkaewnarong, S. Hunpratub, K. Boonserm, E. Swatsitang, S. Maensiri, Ferromagnetism in Fe-doped MgO nanoparticles. J. Mater. Sci. 27, 33–39 (2016)

    Google Scholar 

  73. X. Bie, C. Wang, H. Ehrenberg, Y. Wei, G. Chen, X. Meng, G. Zou, F. Du, Room-temperature ferromagnetism in pure ZnO nanoflowers. Solid State Sci. 12, 1364–1367 (2010)

    Article  Google Scholar 

  74. R.K. Singhal, P. Kumari, A. Samariya, S. Kumar, S.C. Sharma, Y.T. Xing, E.B. Saitovitch, Role of electronic structure and oxygen defects in driving ferromagnetism in nondoped bulk CeO2. Appl. Phys. Lett. 97, 172503 (2010)

    Article  Google Scholar 

  75. S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y. Poo-Arporn, S. Maensiri, Synthesis, characterization, and magnetic properties of monodisperse CeO2nanospheres prepared by PVP-assisted hydrothermal method. Nanoscale Res. Lett. 7, 425–438 (2012)

    Article  Google Scholar 

  76. J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005)

    Article  Google Scholar 

  77. J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Ferromagnetism in Fe-doped SnO2 thin films. Appl. Phys. Lett. 84, 1332–1334 (2004)

    Article  Google Scholar 

  78. Z.V. Popovic, Z.D. Dohcevic-Mitrovic, N. Paunovic, M. Radovic, Evidence of charge delocalization in Ce1−xFex 2+(3+)O2−y nanocrystals (x = 0, 0.06, 0. Phys. Rev. B 85(12), 014302 (2012)

    Article  Google Scholar 

  79. S. Aškrabić, Z.D. Dohčević-Mitrović, V.D. Araújo, G. Ionita, M.M. de Lima Jr, F-centre luminescence in nanocrystalline CeO2. J. Phys. D 46, 495306–495315 (2013)

    Article  Google Scholar 

  80. C. Juna, L. Lin, T. Lu, L. Yong, Electronic structure of F, F+-center in MgO. Eur. Phys. J. B 9, 593–598 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Niruban Bharathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharathi, R.N., Sankar, S. Structural, optical and magnetic properties of Pr doped CeO2 nanoparticles synthesized by citrate–nitrate auto combustion method. J Mater Sci: Mater Electron 29, 6679–6691 (2018). https://doi.org/10.1007/s10854-018-8654-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8654-7

Navigation