Skip to main content
Log in

An improved method for preparation of Ce0.8Pr0.2OY solid solutions with nanoparticles smaller than 10 nm

  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Ce0.8Pr0.2OY solid solutions with ultrafine crystalline sizes and high specific surface area were prepared by an improved citrate precursor method, where a nitrogen treatment was added prior to calcinations in air. The samples were characterized by TG-DSC, Raman spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM) and BET nitrogen adsorption. XRD and Raman results show that the formation of Ce0.8Pr0.2OY solid solutions typical of the fluorite-like cubic structure with oxygen vacancies occurs when the Ce–Pr citrate precursors are heated at high temperature in the nitrogen atmosphere. Subsequent calcinations at a low temperature in air to remove carbon species have no apparent effects on the formed solid solutions. Ce0.8Pr0.2OY solid solution prepared by the improved citrate precursor method at 800°C has ultrafine nanoparticles of less than 10 nm and high specific surface area of 92.1 m2/g, while the sample prepared by the conventional citrate precursor method has mean particle size of 62.1 nm and specific surface area of 18.1 m2/g. Furthermore, Ce–Pr solid solution by the improved method have the mesoporous structure, more lattice defects and oxygen vacancies, which will have a promising application in the catalyst region as well as SOFC field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avgouropoulos G., Ioannides T. (2003). Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea–nitrate combustion method. Appl. Catal. A 244, 155–167

    Article  CAS  Google Scholar 

  • Avgouropoulos G., Ioannides T., Matralis H. (2005). Influence of the preparation method on the performance of CuO–CeO2 catalysts for the selective oxidation of CO. Appl. Catal. B 56, 87–93

    Article  CAS  Google Scholar 

  • Chen L.M., X.M. Sun, Y.N. Liu & Y.D. Li, 2004. Preparation and characterization of porous MgO and NiO/MgO nanocomposites. Appl. Catal. A 265, 123–128

    Article  CAS  Google Scholar 

  • Escribano R., J.J. Sloan, N. Siddique, N. Sze & T. Dudev, 2001. Raman spectroscopy of carbon-containing particles. Vib. Spectrosc. 26, 179–186

    Article  CAS  Google Scholar 

  • Ftikos C., M. Nauer & B.C.H. Steele, 1993. Electrical conductivity and thermal expansion of ceria doped with Pr, Nb and Sn. J. Eur. Ceram. Soc. 12, 267–270

    Article  CAS  Google Scholar 

  • Fu Y.P., C.H. Lin & C.H. Hsu, 2005. Preparation of ultrafine CeO2 powders by microwave-induced combustion and precipitation. J. Alloys Compd. 391, 110–114

    Article  CAS  Google Scholar 

  • Hirano M. & K., Hirai, 2003. Effect of hydrolysis conditions on the direct formation of nanoparticles of Ceria–Zirconia solid solutions from acidic aqueous solutions. J. Nanopart. Res. 5, 147–156

    Article  CAS  Google Scholar 

  • Ikryannikova L.N., G.L. Markaryan, A.N. Kharlanov & E.V. Lunina, 2003. Electron- accepting surface properties of ceria-(praseodymia)-zirconia solids modified by Y3+ or La3+ studied by paramagnetic probe method. Appl. Surf. Sci. 207, 100–114

    Article  CAS  Google Scholar 

  • Ji Y., J. Liu, T.M. He, J.X. Wang & W.H. Su, 2005. The effect of Pr co-dopant on the performance of solid oxide fuel cells with Sm-doped ceria electrolyte. J. Alloy Compd. 389, 317–322

    Article  CAS  Google Scholar 

  • Klug H.P. & L.E. Alexander, 1954. X-Ray Diffraction Procedures, Wiley Press, New York

    Google Scholar 

  • Li L.P, G.S. Li, Y.L. Che, and W.H. Su, 2000. Valence characteristics and structural stabilities of the electrolyte solid solutions Ce1-x RE x O2-δ (RE = Eu, Tb) by high temperature and high pressure. Chem. Mater. 12, 2567–2574

    Article  CAS  Google Scholar 

  • Marinšek M., K. Zupan & J. Maèek, 2002. Ni–YSZ cermet anodes prepared by citrate/nitrate combustion synthesis. J. Power Sources 106, 178–188

    Article  Google Scholar 

  • McBride J.R., K.C. Hass, B.D. Poindexter & W.H. Weber, 1994. Raman and x-ray studies of Ce1-x RE x O2-y , where RE = La, Pr, Nd, Eu, Gd, and Tb. J. Appl. Phys. 76, 2435–2441

    Article  CAS  Google Scholar 

  • Patra C.R., Y. Mastai & A. Gedanken, 2004. Microwave-assisted synthesis of submicrometer GaO(OH) and Ga2O3 rods. J. Nanopart. Res. 6, 509–518

    Article  CAS  Google Scholar 

  • Rey J.F.Q., T.S. Plivelic, R.A. Rocha, S.K. Tadokoro, I. Torriani & E.N.S. Muccillo, 2005. Synthesis of In2O3 nanoparticles by thermal decomposition of a citrate gel precursor. J. Nanopart. Res. 7, 203–208

    Article  CAS  Google Scholar 

  • Rojas T.C. & M. Ocaña, 2002. Uniform nanoparticles of Pr(III)/Ceria solid solutions prepared by homogeneous precipitation. Scripta Mater. 46, 655–660

    Article  CAS  Google Scholar 

  • Shan W.J., Z.C. Feng, Z.L. Li, J. Zhang, W.J. Shen & C. Li, 2004. Oxidative steam reforming of methanol on Ce0.9Cu0.1OY catalysts prepared by deposition–precipitation, coprecipitation, and complexation–combustion methods. J. Catal. 228, 206–217

    Article  CAS  Google Scholar 

  • Sinev M.Y., G.W. Graham, L.P. Haack & M. Shelef, 1996. Kinetic and structural studies of oxygen availability of the mixed oxides Pr1-x M x O y (M = Ce, Zr). J. Mater. Res. 11, 1960–1971

    CAS  Google Scholar 

  • Sing K.S.W., D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pietotti, J. Rouquerol & T. Siemienieska, 1985. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 57, 603–619

    CAS  Google Scholar 

  • Takatori K., T. Tani, N. Watanabe & N. Kamiya, 1999. Preparation and characterization of nano-structured ceramic powders synthesized by emulsion combustion method. J. Nanopart. Res. 1, 197–204

    Article  CAS  Google Scholar 

  • Wang S.B. & G.Q. Lu, 1999. A comprehensive study on carbon dioxide reforming of methane over Ni/γ-Al2O3 catalysts. Ind. Eng. Chem. Res. 38, 2615–2625

    Article  CAS  Google Scholar 

  • Wang H.C. & C.H. Lu, 2002. Synthesis of cerium hydroxycarbonate powders via a hydrothermal technique. Mater. Res. Bull. 37, 783–792

    CAS  Google Scholar 

  • Wu L.J., H.J. Wiesmann, A.R. Moodenbaugh, R.F. Klie, Y.M. Zhu, D.O. Welch and M. Suenaga, 2004. Oxidation state and lattice expansion of CeO2-x nanoparticles as a function of particle size. Phys. Rev. B. 69, 125415

    Article  Google Scholar 

  • Yan Z.L, M.F. Luo, G.Q. Xie, W. Huang & Y.L. Xie, 2005. XRD and Raman characterizations of Ce x P1-x O2-δ mixed oxides. Chin. J. Inorg. Chem. 21, 425–428

    CAS  Google Scholar 

  • Zha S.W., C.R. Xia & G.Y. Meng, 2003. Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells. J. Power Sources 115, 44–48

    Article  CAS  Google Scholar 

  • Zhang F., S.W. Chan, J.E. Spanier, E. Apak and Q. Jin, 2002. Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 80, 127–129

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the National Nature Science Foundation of China (No. 20473075) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-Fei Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, GQ., Luo, MF., He, M. et al. An improved method for preparation of Ce0.8Pr0.2OY solid solutions with nanoparticles smaller than 10 nm. J Nanopart Res 9, 471–478 (2007). https://doi.org/10.1007/s11051-005-9052-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-005-9052-7

Keywords

Navigation