Skip to main content
Log in

Microstructure and thermoelectric properties of un-doped Mg2Si1−xSnx single crystals prepared by high temperature gradient directional solidification

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Un-doped single crystals of Mg2Si1−xSnx (x = 0.55, 0.65 and 0.75) were successfully prepared by high temperature gradient directional solidification (HGDS). In the Mg2Si0.45Sn0.55 crystal, Mg2Si precipitates were observed in the solidified microstructure, and no precipitates in the single crystals of Mg2Si0.35Sn0.65 and Mg2Si0.25Sn0.75. By measuring the electronic transport properties of these three single crystals, the Mg2Si0.35Sn0.65 has a largest PF value, about 2.5 times more than that of the nanocrystalline prepared by solid-state reaction methods. The corresponding ZT values of Mg2Si0.35Sn0.65 single crystal are greatly improved. It indicates that, the Mg2Si1−xSnx crystals prepared by HGDS can not only have a uniform microstructure, but also optimize the TE performance of the crystal. In addition, the first-principles calculation has been conducted to examine the intrinsic properties of Mg2Si1−xSnx single crystals, and the calculated data agree well with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G.J. Snyder, E.S. Toberer, Nat. Mater. 7, 105–114 (2008)

    Article  Google Scholar 

  2. X. Shi, L.D. Chen, Nat. Mater. 15, 691–692 (2016)

    Article  Google Scholar 

  3. F.J. DiSalvo, Science. 285, 703–705 (1999)

    Article  Google Scholar 

  4. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, Z.F. Ren, Science 320, 634–638 (2008)

    Article  Google Scholar 

  5. H.Q. Liu, F.P. Wang, F. Liu, Y. Song, Z.H. Jiang, J. Mater. Sci.: Mater. Electron. 17, 525–528 (2006)

    Google Scholar 

  6. X. Li, S.M. Li, S.K. Feng, H. Zhong, Intermetallics 81, 26–31 (2017)

    Article  Google Scholar 

  7. A.U. Khan, N. Vlachos, Th Kyratsi, Scripta Mater. 69, 606–609 (2013)

    Article  Google Scholar 

  8. G.Y. Jiang, J. He, T.J. Zhu, C.G. Fu, X.H. Liu, L.P. Hu, X.B. Zhao, Adv. Funct. Mater. 24, 1–6 (2014)

    Article  Google Scholar 

  9. H. Yu, Q. Xie, Q. Chen, J. Mater. Sci.: Mater. Electron. 24, 3768–3775 (2013)

    Google Scholar 

  10. J.H. Bahk, Z.X. Bian, A. Shakouri, Phys. Rev. B. 89, 075204 (2014)

    Article  Google Scholar 

  11. W. Liu, H. Chi, H. Sun, Q. Zhang, K. Yin, X.F. Tang, Q.J. Zhang, C. Uher, Phys. Chem. Chem. Phys. 16, 6893–6897 (2014)

    Article  Google Scholar 

  12. P. Gao, X. Lu, I. Berkun, R.D. Schmidt, E.D. Case, T.P. Hogan, Appl. Phys. Lett. 105, 202104 (2014)

    Article  Google Scholar 

  13. Q. Zhang, Y. Zheng, X.L. Su, K. Yin, X.F. Tang, C. Uher, Scripta Mater. 96, 1–4 (2015)

    Article  Google Scholar 

  14. C.H. Su, J. Cryst. Growth 410, 35–38 (2015)

    Article  Google Scholar 

  15. C.J. Ajayakumar, A.G. Kunjomana, J. Mater. Sci.: Mater. Electron. 27, 7467–7477 (2016)

    Google Scholar 

  16. X. Li, S.M. Li, S.K. Feng, H. Zhong, H.Z. Fu, J. Electron. Mater. 45, 2895–2903 (2016)

    Article  Google Scholar 

  17. Y. Liu, W.C. Hu, D.J. Li, X.Q. Zeng, C.S. Xu, Phys. Scripta 88, 045302 (2013)

    Article  Google Scholar 

  18. L. Petrova, N.K. Abrikosov, L.D. Sokolova, V.V. Musaelyan, Inorg. Mater. 26, 1023–1027 (1990)

    Google Scholar 

  19. D. Vanderbilt, Phys. Rev. B 41, 7892–7895 (1990)

    Article  Google Scholar 

  20. M. Marlo, V. Milman, Phys. Rev. B 62, 2899–2907 (2000)

    Article  Google Scholar 

  21. K. Schwarz, P. Blaha, Comput. Mater. Sci. 28, 259–273 (2003)

    Article  Google Scholar 

  22. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Phys. Rev. B 68, 125210 (2003)

    Article  Google Scholar 

  23. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006)

    Article  Google Scholar 

  24. D.F. Zou, H.R. Zheng, J.Y. Li, J. Alloys Compd. 686, 571576 (2016)

    Google Scholar 

  25. X.J. Tan, W. Liu, H.J. Liu, J. Shi, X.F. Tang, C. Uher, Phys. Rev. B 85, 205212 (2012)

    Article  Google Scholar 

  26. E.N. Nikitin, R.N. Tkalenko, V.K. Zaitsev, A.I. Zaslavskii, A.K. Kuznetsov, Inorg. Mater. 4, 1656–1659 (1968)

    Google Scholar 

  27. F. Sadeghi, A. Kermanpur, N. Sarami, D. Heydari, J. Nematollahi, M. Bahmani, Metallogr. Microstruct. Anal. 5, 342–349 (2016)

    Article  Google Scholar 

  28. Z.Q. Guo, J. Li, F. Li, Y. Bai, J. Phys. D 42, 012001 (2009)

    Article  Google Scholar 

  29. H.Y. Li, W.Q. Jie, J. Cryst. Growth 257, 110–115 (2003)

    Article  Google Scholar 

  30. W.S. Liu, B.P. Zhang, J.F. Li, H.L. Zhang, L.D. Zhao, J. Appl. Phys. 102, 103717 (2007)

    Article  Google Scholar 

  31. Y. Gelbstein, Z. Dashevsky, M.P. Dariel, Physica B 363, 196–205 (2005)

    Article  Google Scholar 

  32. X.H. Liu, Y. Wang, J.O. Sofo, T.J. Zhu, L.Q. Chen, X.B. Zhao, J. Mater. Res. 30, 2578–2584 (2015)

    Article  Google Scholar 

  33. W. Liu, X.J. Tan, K. Yin, H.J. Liu, X.F. Tang, J. Shi, Q.J. Zhang, C. Uher, Phys. Rev. Lett. 108, 166601 (2012)

    Article  Google Scholar 

  34. Y.Z. Pei, X.Y. Shi, A. LaLonde, H. Wang, L.D. Chen, G.J. Snyder, Nature 473, 66–69 (2011)

    Article  Google Scholar 

  35. L. Ivanenko, V.L. Shaposhnikov, A.B. Filonov, D.B. Milgas, G. Behr, J. Schumann, H. Vinzelberg, V.E. Borisenko, Microelectron. Eng. 64, 225–232 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Fund of the National Natural Science Foundation of China [Grant Number 51774239]; the Fund of the State Key Laboratory of Solidification Processing in NWPU [Grant Number SKLSP201644]; the Fund of the state Key Laboratory of Solidification Processing in NWPU [Grant Number 133-QP-2015].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, S., Yang, B. et al. Microstructure and thermoelectric properties of un-doped Mg2Si1−xSnx single crystals prepared by high temperature gradient directional solidification. J Mater Sci: Mater Electron 29, 6245–6253 (2018). https://doi.org/10.1007/s10854-018-8601-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8601-7

Navigation