Skip to main content
Log in

Directional Solidification and Thermoelectric Properties of Undoped Mg2Sn Crystal

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Single-phase Mg2Sn crystal has been successfully directionally solidified from the melt with a high temperature gradient of 185 K cm−1. The solidified distance for the growth of single-phase Mg2Sn crystal was predicted theoretically and agreed well with the experimental result. The grown Mg2Sn crystals exhibit better thermoelectric performance and high thermoelectric figure of merit along the growth direction. In the temperature range from 300 K to 700 K, the maximum Seebeck coefficient S and electrical conductivity σ reached −261 μV K−1 and 525 Ω−1 m−1, respectively. The minimum thermal conductivity κ was measured to be 4.3 W m−1 K−1, and the lattice thermal conductivity approximated 90% of the bulk thermal conductivity of the crystal. The method developed in this work provides a methodological reference for preparation of Mg2BIV and its doped and solid-solution compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.S. Nolas, J. Sharp, and H.J. Goldsmid, Thermoelectric Basic Principles and New Materials Developments, 1st ed. (Berlin: Springer, 2001), pp. 1–13.

    Google Scholar 

  2. Y.X. Chen, K. Niitani, J. Izumi, K. Suekuni, and T. Takabatake, J. Cryst. Growth 402, 312 (2014).

    Article  Google Scholar 

  3. H. Lu, P.G. Burke, A.C. Gossard, G. Zeng, A.T. Ramu, J. Bahk, and J.E. Bowers, Adv. Mater. 23, 2377 (2011).

    Article  Google Scholar 

  4. X. Chen, T.J. Zhu, and X.B. Zhao, J. Cryst. Growth 311, 3179 (2009).

    Article  Google Scholar 

  5. K. Kutorasinski, B. Wiendlocha, J. Tobola, and S. Kaprzyk, Phys. Rev. B 11, 1 (2014).

    Google Scholar 

  6. S. Fiameni, A. Famengo, F. Agresti, S. Boldrini, S. Battiston, M. Saleemi, M. Johnsson, M.S. Toprak, and M. Fabrizio, J. Electron. Mater. 43, 2301 (2014).

    Article  Google Scholar 

  7. N. Satyala and D. Vashaee, J. Electron. Mater. 41, 1785 (2012).

    Article  Google Scholar 

  8. H.Y. Chen and N. Savvides, J. Electron. Mater. 38, 1056 (2009).

    Article  Google Scholar 

  9. A.U. Khan, N. Vlachos, and T. Kyratsi, Scr. Mater. 69, 606 (2013).

    Article  Google Scholar 

  10. G. Jiang, J. He, T. Zhu, C. Fu, X. Liu, L. Hu, and X. Zhao, Adv. Funct. Mater. 24, 3776 (2014).

    Article  Google Scholar 

  11. M. Riffel, and J. Schilz, Mechanically alloyed Mg2Si1−x Sn x solid solutions as thermoelectric materials, Proceedings of the 15th International Conference on Thermoelectrics (Koln, 1996), pp. 133–136.

  12. J. Schilz, M. Riffel, K. Pixius, and H.J. Meyer, Powder Technol. 105, 149 (1999).

    Article  Google Scholar 

  13. T. Aizawa, R. Song, and A. Yamamoto, Mater. Trans. 46, 1490 (2005).

    Article  Google Scholar 

  14. T. Aizawa and R. Song, Intermetallics 14, 382 (2006).

    Article  Google Scholar 

  15. Q. Zhang, Y. Zhen, X.L. Su, K. Yin, X.F. Tang, and C. Uher, Scr. Mater. 96, 1 (2015).

    Article  Google Scholar 

  16. X.L. Su, F. Fu, Y.G. Yan, G. Zheng, T. Liang, Q. Zhang, X. Cheng, D.W. Yang, H. Chi, X.F. Tang, Q.J. Zhang, and C. Uher, Nat. Commun. 5, 4908 (2014).

    Article  Google Scholar 

  17. W. Liu, X.J. Tan, K. Yin, H.J. Liu, X.F. Tang, J. Shi, Q.J. Zhang, and C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Article  Google Scholar 

  18. N. Savvides and H.Y. Chen, J. Electron. Mater. 39, 2136 (2010).

    Article  Google Scholar 

  19. H.Y. Chen and N. Savvides, J. Cryst. Growth 312, 2328 (2010).

    Article  Google Scholar 

  20. H.Y. Chen and N. Savvides, J. Electron. Mater. 39, 1792 (2010).

    Article  Google Scholar 

  21. H.Y. Chen, N. Savvides, T. Dasgupta, C. Stiewe, and E. Mueller, Phys. Status Solidi A Appl. Mater. 207, 2523 (2010).

    Article  Google Scholar 

  22. M.E. Glicksman, Principles of Solidification (New York, Springer, 2010), pp. 12–23, 221–234.

  23. W. Kurz and D.J. Fisher, Fundamentals of Solidification (Aedermannsdorf: Trans Tech, 1998), p. 294.

    Google Scholar 

  24. V.K. Zaitsev and E.N. Nikitin, Sov. Phys. Solid State 12, 289 (1970).

    Google Scholar 

  25. S.K. Feng, S.M. Li, and H.Z. Fu, Chin. Phys. B 23, 117202 (2014).

    Article  Google Scholar 

  26. J. Bahk, Z. Bian, and A. Shakouri, Phys. Rev. B 89, 075204 (2014).

    Article  Google Scholar 

  27. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  Google Scholar 

  28. F.P.F. Poudeu, J. D’Angelo, H.J. Kong, A. Downey, J.L. Short, R. Pcionek, T.P. Hogan, C. Uher, and M.G. Kanatzidis, J. Am. Chem. Soc. 128, 14347 (2006).

    Article  Google Scholar 

  29. Y.L. Pei and Y. Liu, J. Alloys Compd. 514, 40 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Fei Youjian, Xi’an Jiaotong University, for help with properties testing. This work is supported by the Research Fund of Shanxi Provincial Natural Science Foundation (No. 2015JM5149), the fund of the State Key Laboratory of Solidification Processing in NWPU (SKLSP201507), and the State Key Laboratory of Solidification Processing (NWPU) of China (No. 133-QP-2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang-ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Li, Sm., Feng, Sk. et al. Directional Solidification and Thermoelectric Properties of Undoped Mg2Sn Crystal. J. Electron. Mater. 45, 2895–2903 (2016). https://doi.org/10.1007/s11664-015-4320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4320-5

Keywords

Navigation