Skip to main content
Log in

Transmission Electron Microscopy Study of Mg2Si0.5Sn0.5 Solid Solution for High-Performance Thermoelectrics

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A Mg2Si0.5Sn0.5 solid solution was prepared by mixing Mg2Si and Mg2Sn powders and hot-pressing the mixture. The Mg2Si0.5Sn0.5 samples exhibited a much lower thermal conductivity (1.92 W m−1 K−1 at 300 K) than the parent Mg2Si (8.75 W m−1 K−1) and Mg2Sn compounds (6.28 W m−1 K−1). X-ray diffraction measurements confirmed the successful synthesis of the Mg2Si0.5Sn0.5 solid solution. Electron microscopy observations revealed that the grains were mainly 10–20 μm in size and had clean grain boundaries without obvious inclusions and precipitates. The major phase was cubic Mg2Si0.5Sn0.5. MgO nanoparticles 10–20 nm in diameter were evenly dispersed in the Mg2Si0.5Sn0.5 matrix, which probably reduced its thermal conductivity; moreover, uneven structures containing pure Si and Sn particles were found in the Mg2Si0.5Sn0.5 grains. The origin and the formation mechanisms of the MgO and other impurity particles, and their effect on thermoelectric properties of Mg2Si0.5Sn0.5, are discussed. The low thermal conductivity of Mg2Si0.5Sn0.5 resulted in a relatively high dimensionless figure of merit ZT = 0.0132 at 300 K, which may be further increased by optimizing the synthesis procedure, alloy composition, and doping level. This work provides information on the structure and chemistry and their relationship with the thermoelectric properties of the Mg2Si0.5Sn0.5 solid solution; it may help in developing other Mg2Si1−x Sn x compounds with superior thermoelectric properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F.J. Di Salvo, Science 285, 703 (1999).

    Article  Google Scholar 

  2. L.E. Bell, Science 321, 1457 (2008).

    Article  Google Scholar 

  3. G.J. Snyder and E.S. Toberer, Nature Mater. 7, 105 (2008).

    Article  Google Scholar 

  4. Y.C. Lan, A.J. Minnich, G. Chen, and Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010).

    Article  Google Scholar 

  5. M.I. Fedorov, J. Thermoelectr. 2, 51 (2009).

    Google Scholar 

  6. W. Liu, X.F. Tang, H. Li, J. Sharp, X.Y. Zhou, and C. Uher, Chem. Mater. 23, 5256 (2011).

    Article  Google Scholar 

  7. R.C. Mallik, R. Anbalagan, K.K. Raut, A. Bali, E. Royanian, E. Bauer, G. Rogl, and P. Rogl, J. Phys.: Condens. Matter 25, 105701 (2013).

    Google Scholar 

  8. J.Q. He, L.D. Zhao, J.C. Zheng, J.W. Doak, H.J. Wu, H.Q. Wang, Y. Lee, C. Wolverton, M.G. Kanatzidis, and V.P. Dravid, J. Am. Chem. Soc. 135, 4624 (2013).

    Article  Google Scholar 

  9. J.R. Sootsman, D.Y. Chung, and M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  10. H. Ihou-Mouko, C. Mercier, J. Tobola, G. Pont, and H. Scherrer, J. Alloys Compd. 509, 6503 (2011).

    Article  Google Scholar 

  11. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, and M.V. Vedernikov, Phys. Rev. B 74, 045207 (2006).

    Article  Google Scholar 

  12. W. Liu, X.F. Tang, H. Li, K. Yin, J. Sharp, X.Y. Zhou, and C. Uher, J. Mater. Chem. 22, 13653 (2012).

    Article  Google Scholar 

  13. B. Poudel, Q. Hao, Y. Ma, Y.C. Lan, A. Minnich, B. Yu, X.A. Yan, D.Z. Wang, A. Muto, D. Vashaee, X.Y. Chen, J.M. Liu, M.S. Dresselhaus, G. Chen, and Z.F. Ren, Science 320, 634 (2008).

    Article  Google Scholar 

  14. C.J. Vineis, A. Shakouri, A. Majumdar, and M.G. Kanatzidis, Adv. Mater. 22, 3970 (2010).

    Article  Google Scholar 

  15. X.J. Tan, W. Liu, H.J. Liu, J. Shi, X.F. Tang, and C. Uher, Phys. Rev. B 85, 205212 (2012).

    Article  Google Scholar 

  16. J.Q. He, J. Androulakis, M.G. Kanatzidis, and V.P. Dravid, Nano Lett. 12, 343 (2012).

    Article  Google Scholar 

  17. L.X. Chen, G.Y. Jiang, Y. Chen, Z.L. Du, X.B. Zhao, T.J. Zhu, J. He, and T.M. Tritt, J. Mater. Res. 26, 3038 (2011).

    Article  Google Scholar 

  18. Y. Isoda, T. Nagai, H. Fujiu, Y. Imai, and Y. Shinohara, Proceedings of the 26th International Conference on Thermoelectrics (2007), p. 251.

  19. Y. Isoda, S. Tada, T. Nagai, H. Fujiu, and Y. Shinohara, J.␣Electron. Mater. 39, 1531 (2010).

    Article  Google Scholar 

  20. S. Tada, Y. Isoda, H. Udono, H. Fujiu, S. Kumagai, and Y. Shinohara, J. Electron. Mater. 43, 1580 (2014).

    Article  Google Scholar 

  21. Y. Isoda, M. Held, S. Tada, and Y. Shinohara, J. Electron. Mater. 43, 2053 (2014).

    Article  Google Scholar 

  22. Y. Isoda, N. Shioda, H. Fujiu, Y. Imai, and Y. Shinohara, Proceedings of the 23rd International Conference on Thermoelectrics (2005), p. 496.

  23. S.M. Choi, T.H. An, W.S. Seo, C. Park, I.H. Kim, and S.U. Kim, J. Electron. Mater. 41, 1071 (2012).

    Article  Google Scholar 

  24. G.S. Nolas, D. Wang, and M. Beekman, Phys. Rev. B 76, 235204 (2007).

    Article  Google Scholar 

  25. Q. Zhang, J. He, X.B. Zhao, S.N. Zhang, T.J. Zhu, H. Yin, and T.M. Tritt, J. Phys. D Appl. Phys. 41, 185103 (2008).

    Article  Google Scholar 

  26. Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao, and T.M. Tritt, Appl. Phys. Lett. 93, 102109 (2008).

    Article  Google Scholar 

  27. W. Liu, X.F. Tang, and J. Sharp, J. Phys. D Appl. Phys. 43, 085406 (2010).

    Article  Google Scholar 

  28. T. Dasgupta, C. Stiewe, A.J. Zhou, L. Boettcher, and E. Mueller, Phys. Rev. B 83, 235207 (2011).

    Article  Google Scholar 

  29. S. Wang and N. Mingo, Appl. Phys. Lett. 94, 203109 (2009).

    Article  Google Scholar 

  30. X.B. Zhao, S.H. Yang, Y.Q. Cao, J.L. Mi, Q. Zhang, and T.J. Zhu, J. Electron. Mater. 38, 1017 (2009).

    Article  Google Scholar 

  31. Z.L. Du, G.Y. Jiang, Y. Chen, H.L. Gao, T.J. Zhu, and X.B. Zhao, J. Electron. Mater. 41, 1222 (2012).

    Article  Google Scholar 

  32. M. Saleemi, M.S. Toprak, S. Fiameni, S. Boldrini, S. Battiston, A. Famengo, M. Stingaciu, M. Johnsson, and M. Muhammed, J. Mater. Sci. 48, 1940 (2013).

    Article  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Song.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JW., Song, M., Takeguchi, M. et al. Transmission Electron Microscopy Study of Mg2Si0.5Sn0.5 Solid Solution for High-Performance Thermoelectrics. J. Electron. Mater. 44, 407–413 (2015). https://doi.org/10.1007/s11664-014-3419-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-014-3419-4

Keywords

Navigation