Skip to main content
Log in

Hydrothermal synthesis and characterization of silica nanowires using rice husk ash: an agricultural waste

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

One-dimensional structures are the smallest dimension structures that represent a unique system for analyzing phenomena at the Nanoscale. Nanowires, which can be used for space confined transport phenomena and enhanced optical properties, are believed to play significant role in the function and integration of Nano electronics and Nano optoelectronics devices. Nanowires with well controlled morphology and extremely high aspect ratio can be obtained by various complex techniques but the demand of upcoming future technology is to synthesize large scale 1D nanostructures with simple and efficient cost effective methods. With this view, in the present study, large scale amorphous silica nanowires (SiO2 NWs) were synthesized from rice husk ash using Fe2O3 assisted hydrothermal method and characterizations of these nanowires along with rice husk ash (RHA) containing porous silica, were done using various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV–Vis spectroscopy and photoluminescence (PL). The structural study of silica nanowires were studied using XRD, indicating the amorphous phases of silica in both RHA as well as nanowires. The chemical composition along with symmetric or anti-symmetric starching bonds of amorphous SiO2 NWs and RHA was confirmed using FTIR. The morphological study was done using SEM and TEM. The SiO2 NWs so obtained have diameter in the range from 15 to 35 nm and length about 0.5 µm. In optical study, the enhanced band gap of amorphous SiO2 NWs as compared to RHA was observed using UV–Vis spectroscopy. PL spectroscopy shows strong blue light emission by silica nanowires as compare to RHA. This study opens up new areas for research to modulate optoelectronic properties of SiO2 nanowires for the novel device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Hu, T.W. Odom, C.M. Lieber, Acc. Chem. Res. 32, 435–445 (1999)

    Article  Google Scholar 

  2. P. Singh, S. Kumar, R. Prasad, R. Kumar, Radiat. Phys. Chem. 94, 54–57 (2014)

    Article  Google Scholar 

  3. R. Kumar, D. Udayan, R. Prasad. Nuclear instruments and methods. Phys. Res. Sect. B 248(2), 279–283 (2006)

    Google Scholar 

  4. Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 15, 353–389 (2003)

    Article  Google Scholar 

  5. C.M. Lieber, MRS Bull. 28(7), 486–491 (2003)

    Article  Google Scholar 

  6. R. Kumar, S.A. Ali, D. Udayan, A.H. Naqvi, S.K. Chaudhary, D. Das, R. Prasad, Radiat. Meas. 43, S578–S582 (2008)

    Google Scholar 

  7. R.K. Dhillon, P. Singh, S.K. Gupta, R. Kumar, Nuclear instruments and methods. Phys. Res. Sect. B 301, 12–16 (2013)

    Google Scholar 

  8. F. Patolsky, C.M. Lieber, Mater. Today 8(4), 20–28 (2005)

    Article  Google Scholar 

  9. F. Patolsky, B.P. Timko, G. Zheng, C.M. Lieber, MRS Bull. 32(02), 142–149 (2007)

    Article  Google Scholar 

  10. Y. Li, F. Qian, J. Xiang, C.M. Lieber, Mater. Today 9(10), 18–27 (2006)

    Article  Google Scholar 

  11. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Nature. 426(6968), 816–819 (2003)

    Article  Google Scholar 

  12. J.Q. Xu, H. Onodera, T. Sekiguchi, D. Golberg, Y. Bando, T. Mori, Fabrication, characterization, cathodoluminescence, and field-emission properties of silica (SiO2) nanostructures. Mater. Charact. 73, 81–88 (2012)

    Article  Google Scholar 

  13. V.P. Della, I. Kühn, D. Hotza, Rice husk ash as an alternate source for active silica production. Mater. Lett. 57, 818–821 (2002)

    Article  Google Scholar 

  14. T.H. Liou, C.C. Yang, Mater. Sci. Eng. B 176(7), 521–529 (2011)

    Article  Google Scholar 

  15. Y. Shinohara, K. Norihiko, Ind. Health. 42(2), 277–285 (2004)

    Article  Google Scholar 

  16. T.H. Liou, Mater. Sci. Eng. A 364(1), 313–323 (2004)

    Article  Google Scholar 

  17. S. Chandrasekhar, P.N. Pramada, L. Praveen, J. Mater. Sci. 40, 6535–6544 (2005)

    Article  Google Scholar 

  18. S. Dhage, H.C. Lee, M.S. Hassan, M.S. Akhtar, C.Y. Kim, J.M. .Sohn, K.J. Kim, H.S. Shin, O.B. Yang, Mater. Lett. 63, 174–176 (2009)

    Article  Google Scholar 

  19. N.H. Bateni, M.N. Hamidon, K.A. Matori, S. Pojprapai, P. Kantha, J. Mater. Sci. 25(12), 5491–5495 (2014)

    Google Scholar 

  20. V. Pavarajarn, R. Precharyutasin, P. Praserthdam., J. Am. Ceram. Soc. 93(4), 973–979 (2010)

    Article  Google Scholar 

  21. K. Kaviyarasu, E. Manikandan, J. Kennedy, M. Jayachandran, M. Maaza, Adv. Mater. Lett. 7(9), 684–696 (2016)

    Article  Google Scholar 

  22. Z. Zhang, W. He, J. Zheng, G. Wang, J. Ji, Nanoscale Res. Lett. 11(1), 502 (2016)

    Article  Google Scholar 

  23. R.R. Zaky, M.M. Hessien, A.A. El-Midany, M.H. Khedr, E.A. Abdel-Aal, K.A. El-Barawy, Powder Technol. 185(1), 31–35 (2008)

    Article  Google Scholar 

  24. Y.J. Chen, J.B. Li, J.H. Dai, Chem. Phys. Lett. 344, 450–456 (2001)

    Article  Google Scholar 

  25. B. Zheng, Y. Wu, P. Yang, J. Liu, Adv. Mater. 14(2), 122 (2002)

    Article  Google Scholar 

  26. G. Wei, F. Gao, J. Zheng, G. Zhao, W. Yang, J. Mater. Sci. 24(10), 3805–3811 (2013)

    Google Scholar 

  27. H.K. Park, B. Yang, S.W. Kim, G.H. Kim, D.H. Youn, S.H. Kim, S.L. Maeng, Physica E 37(1), 158–162 (2007)

    Article  Google Scholar 

  28. X. Gu, Y. Qiang, Y. Zhao, J. Mater. Sci. 23(5), 1037–1040 (2012)

    Google Scholar 

  29. M. Rani, R. Kumar, R.K.R. Singh, S.K. Chakarvarti, Chalcogenide Lett. 10(3), 99–104 (2013)

    Google Scholar 

  30. L.Z. Pei, H.S. Zhao, W. Tan, H.Y. Yu, Y.W. Chen, C.G. Fan, Q.F. Zhang, Mater. Charact. 60(11), 1400–1405 (2009)

    Article  Google Scholar 

  31. L.W. Lin, Y.H. Tang, X.X. Li, L.Z. Pei, Y. Zhang, C. Guo, J. Appl. Phys. 101, 014314 (2007)

    Article  Google Scholar 

  32. Q. Gao, P. Chen, Y. Zhang, Y. Tang, Adv. Mater. 20, 1837–1842 (2008)

    Article  Google Scholar 

  33. J. Coates, Interpretation of infrared spectra, a practical approach. Encycl. Anal. Chem. https://doi.org/10.1002/9780470027318.a5606 (2000)

    Google Scholar 

  34. M.K. Jaiswal, D. Kanjilal, R. Kumar, Beam Interact. Mater. Atoms 314, 170–175 (2013)

    Google Scholar 

  35. X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhau, Y.P. Sun, J.J. Du, Chem. Phys. Lett. 336, 53–56 (2001)

    Article  Google Scholar 

  36. D.P. Yu, Q.L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, S.Q. Feng, Appl. Phys. Lett. 73, 3076 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

One of the Authors (Anuj Bathla) express thanks to the SAIF department, Punjab University, Chandigarh for providing TEM facility. Authors also acknowledge NIT kurukshetra, India for XRD, SEM, FTIR, UV–Vis and PL spectroscopy facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bathla, A., Narula, C. & Chauhan, R.P. Hydrothermal synthesis and characterization of silica nanowires using rice husk ash: an agricultural waste. J Mater Sci: Mater Electron 29, 6225–6231 (2018). https://doi.org/10.1007/s10854-018-8598-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8598-y

Navigation