Skip to main content
Log in

Effects of graphene oxide on the electromigration lifetime of lead-free solder joints

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electromigration (EM) is the mass transport of atoms due to electron flow, which induces a disconnect in electronic packaging. Recently, EM has received growing attention because it occurs easily when the size of joints in electronic packaging is reduced for better integration. Many researchers tried to improve the EM properties of solder joints by adding minor elements or using composites. Some studies reported that adding graphene, which is widely researched in recent years, to electronic packaging could improve the EM property. However, there is a lack of research on the EM lifetime characteristics with other materials added to the solder, such as minor elements, composites, and graphene. In this study, the effect of graphene oxide (GO) powder in Sn–3.0Ag–0.5Cu Pb-free solder paste on the EM lifetime of the solder joint was investigated. Using the fabricated solder paste and a reflow process, the printed circuit board finished with organic solderability preservative on Cu pad and Ni/Au-finished ball grid array packages with solder balls were joined. Afterwards, EM tests were performed at an elevated temperature of 130 °C and a current density of 1.0 × 103 A/cm2. The EM lifetime increased as the amount of added GO powders increased. Notably, the addition of 0.2 wt% GO nearly doubled the EM lifetime in the solder joint compared to that without GO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Abtew, G. Selvaduray, Mater. Sci. Eng. R 27, 95 (2000)

    Article  Google Scholar 

  2. Y. Xia, X. Xie, J. Alloys Compd. 454, 174 (2008)

    Article  Google Scholar 

  3. S.K. Kang, W.K. Choi, M.J. Yim, D.Y. Shih, J. Electron. Mater. 31, 1292 (2002)

    Article  Google Scholar 

  4. R.R. Tummala, Fundamentals of Microsystems Packaging (McGraw-Hill, New York, 2001), pp. 204–205

    Google Scholar 

  5. C. Chen, S.W. Liang, J. Mater. Sci.: Mater. Electron. 18, 259 (2007)

    Google Scholar 

  6. Y.R. Yoo, Y.S. Kim, Met. Mater. Int. 16, 739 (2010)

    Article  Google Scholar 

  7. J.R. Lloyd, J. Phys. D 32, R109 (1999)

    Article  Google Scholar 

  8. I. Jeon, Y.B. Park, Microelectron. Reliab. 44, 917 (2004)

    Article  Google Scholar 

  9. K.N. Tu, J. Appl. Phys. 94, 5451 (2003)

    Article  Google Scholar 

  10. M. Ding, G. Wang, B. Chao, P.S. Ho, P. Su, T. Uehling, J. Appl. Phys. 99, 094906 (2006)

    Article  Google Scholar 

  11. J.H. Lee, Y.B. Park, J. Electron. Mater. 38, 2194 (2009)

    Article  Google Scholar 

  12. Y.C. Hu, Y.H. Lin, C.R. Kao, K.N. Tu, J. Mater. Res. 18, 2544 (2003)

    Article  Google Scholar 

  13. K.N. Tu, Microelectron. Reliab. 51, 517 (2011)

    Article  Google Scholar 

  14. Y.S. Lai, H.M. Tong, K.N. Tu, Microelectron. Reliab. 49, 221 (2009)

    Article  Google Scholar 

  15. S.H. Kim, J.M. Kim, S. Yoo, Y.B. Park, Curr. Appl. Phys. 13, S103 (2013)

    Article  Google Scholar 

  16. S.H. Chae, X. Zhang, K.H. Lu, H.L. Chao, P.S. Ho, M. Ding, P. Su, T. Uehling, L.N. Ramanathan, J. Mater. Sci.: Mater. Electron. 18, 247 (2007)

    Google Scholar 

  17. T.Y. Lee, K.N. Tu, D.R. Frear, J. Appl. Phys. 90, 4502 (2001)

    Article  Google Scholar 

  18. K. Yamanaka, Y. Tsukada, K. Suganuma, Scripta Mater. 55, 867 (2006)

    Article  Google Scholar 

  19. W.H. Lin, A.T. Wu, S.Z. Lin, T.H. Chuang, K.N. Tu, J. Electron. Mater. 36, 753 (2007)

    Article  Google Scholar 

  20. T.L. Shao, Y.H. Chen, S.H. Chiu, C. Chen, J. Appl. Phys. 96, 4518 (2004)

    Article  Google Scholar 

  21. Y.S. Lai, K.M. Chen, C.L. Kao, C.W. Lee, Y.T. Chiu, Microelectron. Reliab. 47, 1273 (2007)

    Article  Google Scholar 

  22. H.J. Lin, J.S. Lin, T.H. Chuang, J. Alloys Compd. 487, 458 (2009)

    Article  Google Scholar 

  23. F. Ren, J.W. Nah, K.N. Tu, B. Xiong, L. Xu, J.H.L. Pang, Appl. Phys. Lett. 89, 141914 (2006)

    Article  Google Scholar 

  24. M. Lu, D.Y. Shih, P. Lauro, C. Goldsmith, D.W. Henderson, Appl. Phys. Lett. 92, 211909 (2008)

    Article  Google Scholar 

  25. L. Zhang, X.Y. Fan, C.W. He, Y.H. Guo, J. Mater. Sci.: Mater. Electron. 24, 3249 (2013)

    Google Scholar 

  26. J.M. Kim, M.H. Jeong, S. Yoo, Y.B. Park, J. Electron. Mater. 41, 791 (2012)

    Article  Google Scholar 

  27. X. Gu, K. Ding, J. Cai, L. Kong, Proceedings of 11th International Conference on Electronic Packaging Technology & High Density Packaging (2010), pp. 1273–1279

  28. L. Ma, G. Xu, J. Sun, F. Guo, X. Wang, J. Mater. Sci. 46, 4896 (2011)

    Article  Google Scholar 

  29. R. Zhao, L. Ma, Y. Zuo, S. Liu, F. Guo, J. Electron. Mater. 42, 280 (2013)

    Article  Google Scholar 

  30. D.R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, ISRN Condens. Matter Phys. (2012). https://doi.org/10.5402/2012/501686

    Google Scholar 

  31. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007)

    Article  Google Scholar 

  32. C.G. Kang, S.K. Lim, S. Lee, S.K. Lee, C. Cho, Y.G. Lee, H.J. Hwang, Y. Kim, H.J. Choi, S.H. Choe, Nanotechnology 24, 115707 (2013)

    Article  Google Scholar 

  33. X. Hu, Y.C. Chan, K. Zhang, K.C. Yung, J. Alloys Compd. 580, 162 (2013)

    Article  Google Scholar 

  34. W.H. Zhong, Y.C. Chan, B.Y. Wu, M.O. Alam, J.F. Guan, J. Mater. Sci. 42, 5239 (2007)

    Article  Google Scholar 

  35. X.D. Liu, Y.D. Han, H.Y. Jing, J. Wei, L.Y. Xu, Mater. Sci. Eng. A 562, 25 (2013)

    Article  Google Scholar 

  36. C. Ho, R. Tsai, Y. Lin, C. Kao, J. Electron. Mater. 31, 584 (2002)

    Article  Google Scholar 

  37. R. Darveaux, C. Reichman, N. Islam, Proceedings of 56th Electronic Components and Technology Conference (2006), pp. 906–917

  38. K. Yamamoto, T. Kato, T. Kawamura, H. Nakano, M. Koizumi, H. Akahoshi, R. Satoh, Weld. Int. 23, 490 (2009)

    Article  Google Scholar 

  39. D.Q. Yu, C.M.L. Wu, D.P. He, N. Zhao, L. Wang, J.K.L. Lai, J. Mater. Res. 20, 2205 (2005)

    Article  Google Scholar 

  40. G. Zeng, S. Xue, L. Zhang, L. Gao, W. Dai, J. Luo, J. Mater. Sci.: Mater. Electron. 21, 421 (2010)

    Google Scholar 

  41. Y.H. Lin, C.M. Tsai, Y.C. Hu, Y.L. Lin, C.R. Kao, J. Electron. Mater. 34, 27 (2005)

    Article  Google Scholar 

  42. Y.H. Lin, Y.C. Hu, C.M. Tsai, C.R. Kao, K.N. Tu, Acta Mater. 53, 2029 (2005)

    Article  Google Scholar 

  43. J.S. Zhang, Y.C. Chan, Y.P. Wu, H.J. Xi, F.S. Wu, J. Alloys Compd. 458, 492 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported through grants from the Korea Institute of Industrial Technology (KITECH) and National Research Foundation of Korea (NRF, 2016R1D1A3B03933937), Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Ho Ko or Taek-Soo Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, YH., Son, K., Kim, G. et al. Effects of graphene oxide on the electromigration lifetime of lead-free solder joints. J Mater Sci: Mater Electron 30, 2334–2341 (2019). https://doi.org/10.1007/s10854-018-0506-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0506-y

Navigation