Skip to main content

Advertisement

Log in

Highly transparent preimidized semi-alicyclic polyimide varnishes with low curing temperatures and desirable processing viscosities at high solid contents: preparation and applications for LED chip passivation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A series of semi-alicyclic polyimide (PI) resins with the number average molecular weights (Mn) in the range of 34901–74790 g/mol were prepared from a hydrogenated 3,3′,4,4′-biphenyltetracarboxylic dianhydride (HBPDA) and various aromatic diamines by a high-temperature polycondensation procedure. For comparison, the analogous PI reference resins were prepared from hydrogenated 1,2,4,5-pyromellitic dianhydride (HPMDA) and the same aromatic diamines. The prepared PI resins were all soluble in polar aprotic solvents, such as N-methyl-pyrrolidinone (NMP) and N,N-dimethylacetamide (DMAc). Various PI varnishes with the solid contents as high as 35–45 wt% were successfully prepared by dissolving the PI resins in NMP. Some of the PI varnishes, including PI-3 derived from HBPDA and 1,3-bis(3-aminophenoxy)benzene (133APB), PI-5 from HBPDA and 2,2′-bis(trifluoromethyl)benzidine (TFMB), and PI-3′ from HPMDA and 133APB exhibited desirable processing viscosities at high solid contents. For example, when the solid content was 35 wt%, the PI varnishes showed absolute viscosities of 2144 mPa s for PI-3, 9971 mPa s for PI-5, and 3156 mPa s for PI-3′, respectively. The values were 6877 mPa s for PI-3, 42370 mPa s for PI-5, and 13700 mPa s for PI-3′, respectively when the solid contents of the PI varnishes increased to 40 wt%. This unique feature made the current PI varnishes good candidates as thick-film passivation layers for chip protection. Bare light emitting diodes chips were successfully passivated via once coating by using PI-5 (HBPDA–TFMB) varnish with a solid content of 35 wt%. The HBPDA–PI passivation layers exhibited good thermal stabilities with the glass transition temperatures (Tg) in the range of 171.5–296.3 °C and 5% weight loss temperatures higher than 470 °C. In addition, they showed good optical transparency with the transmittance higher than 72% at 450 nm at a thickness of 25 µm and low yellow indices and haze values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.J. Licari, Coating Materials for Electronic Applications: Polymers, Processes, Reliability, Testing (Noyes Publications/William Andrew Inc., New York, 2003), pp. 65–200

    Google Scholar 

  2. O.V. Neelova, Polym. Sci. Ser. D 11, 159 (2018)

    Article  Google Scholar 

  3. G.J. Lee, Y.W. Kim, D.I. Kwon, Microelectron. Eng. 87, 2288 (2010)

    Article  Google Scholar 

  4. X.M. Zhang, J.G. Liu, S.Y. Yang, Rev. Adv. Mater. Sci. 46, 22 (2016)

    Google Scholar 

  5. G.L. Wu, J.L. Li, K.K. Wang, Y.Q. Wang, C. Pan, A.L. Feng, J. Mater. Sci.: Mater. Electron. 28, 6544–6551 (2017)

    Google Scholar 

  6. S.S.A. Shah, H. Nasir, A. Saboor, J. Mater. Sci.: Mater. Electron. 29, 402 (2018)

    Google Scholar 

  7. Z.Y. Li, K.C. Kou, J.Q. Zhang, Y. Zhang, Y.Q. Wang, C. Pan, J. Mater. Sci.: Mater. Electron. 28, 6079 (2017)

    Google Scholar 

  8. G.L. Wu, Y.H. Cheng, Z.D. Wang, K.K. Wang, A.L. Feng, J. Mater. Sci.: Mater. Electron. 28, 576 (2017)

    Google Scholar 

  9. M. Hatami, J. Mater. Sci.: Mater. Electron. 28, 3897 (2017)

    Google Scholar 

  10. S.J. Luo, C.P. Wong, IEEE Trans. Electron. Packag. Manuf. 26, 305 (2003)

    Article  Google Scholar 

  11. S. Zelmat, M.L. Locatelli, T. Lebey, S. Diaham, Microelectron. Eng. 83, 51 (2006)

    Article  Google Scholar 

  12. Y. Ding, B. Bikson, J.K. Nelson, Macromolecules 35, 905 (2002)

    Article  Google Scholar 

  13. J. Herzberger, V. Meenakshisundaram, C.B. Williams, T.E. Long, ACS Macro Lett. 7, 493 (2018)

    Article  Google Scholar 

  14. P.S.G. Krishnan, R.H. Vora, T.S. Chung, S. Uchimura, N. Sasaki, J. Polym. Res. 11, 299 (2004)

    Article  Google Scholar 

  15. L.L. Yuan, M. Ji, S.Y. Yang, J. Appl. Polym. Sci. 134, 45168 (2017)

    Article  Google Scholar 

  16. D.J. Liaw, K.L. Wang, Y.C. Huang, K.R. Lee, J.Y. Lai, C.S. Ha, Prog. Polym. Sci. 37, 907 (2012)

    Article  Google Scholar 

  17. S. Ando, T. Matsuura, S. Sasaki, Polym. J. 29, 69 (1997)

    Article  Google Scholar 

  18. H.N. Yeo, M.J. Goh, B.C. Ku, N.H. You, Polymer 76, 280 (2015)

    Article  Google Scholar 

  19. C.L. Tsai, H.J. Yen, G.S. Liou, React. Funct. Polym. 108, 2 (2016)

    Article  Google Scholar 

  20. H.J. Ni, J.G. Liu, Z.H. Wang, S.Y. Yang, J. Ind. Eng. Chem. 28, 16 (2015)

    Article  Google Scholar 

  21. M. Lebbai, J.K. Kim, M.M.F. Yuen, J. Electron. Mater. 32, 574 (2003)

    Article  Google Scholar 

  22. H. Li, G. Cheng, G.W. Xu, L. Luo, J. Mater. Sci.: Mater. Electron. 27, 8325 (2016)

    Google Scholar 

  23. L.J. Matienzo, F.D. Egitto, J. Mater. Sci. 42, 239–251 (2007)

    Article  Google Scholar 

  24. J.G. Liu, M.H. He, H.W. Zhou, Z.G. Qian, F.S. Wang, S.Y. Yang, J. Polym. Sci. A 40, 112–119 (2002)

    Google Scholar 

  25. Y.Z. Guo, D.X. Shen, H.J. Ni, J.G. Liu, S.Y. Yang, Prog. Org. Coat. 76, 758–777 (2013)

    Article  Google Scholar 

  26. J.G. Liu, Y. Nakamura, T. Ogura, Y. Shibasaki, S. Ando, M. Ueda, Chem. Mater. 20, 273 (2008)

    Article  Google Scholar 

  27. T. Kikuchi, T. Fujita, T. Saito, M. Kojima, H. Sato, H. Suzuki, US Patent 4,958,001, 1990

  28. X.F. Hu, H.L. Mu, Y.X. Wang, Z. Wang, J.L. Yan, Polymer 134, 8 (2018)

    Article  Google Scholar 

  29. H.C. Yu, J.W. Jung, J.Y. Choi, C.M. Chung, J. Polym. Sci. A 54, 1593 (2016)

    Article  Google Scholar 

  30. M. Hasegawa, Polymers 9, 520 (2017)

    Article  Google Scholar 

  31. M. Yasuda, A. Takahashi, T. Oyama, J. Photopolym. Sci. Technol. 26, 357 (2013)

    Article  Google Scholar 

  32. X.Z. Jin, H. Ishi, J. Appl. Polym. Sci. 98, 15 (2005)

    Article  Google Scholar 

  33. C. Lee, Y. Shul, H. Han, J.Polym. Sci. B 40, 2190 (2002)

    Article  Google Scholar 

  34. F.M. Li, K.H. Kim, E.P. Savitski, J.C. Chen, F.W. Harris, S.Z.D. Cheng, Polymer 38, 3223 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

Financial support from the Fundamental Research Funds of China University of Geosciences (Grant No. 2652017345) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingang Liu or Xiumin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Liu, J., Jiang, G. et al. Highly transparent preimidized semi-alicyclic polyimide varnishes with low curing temperatures and desirable processing viscosities at high solid contents: preparation and applications for LED chip passivation. J Mater Sci: Mater Electron 30, 549–560 (2019). https://doi.org/10.1007/s10854-018-0321-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0321-5

Navigation