Skip to main content
Log in

Enhanced rate performance and cycle stability of LiNi0.8Co0.15Al0.05O2 via Rb doping

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rubidium modified Ni-rich LiNi0.8Co0.15Al0.05O2 cathode materials were successfully synthesized through a nano-milling assisted solid-state method. Rietveld refinement revealed that the Rb ions were incorporated into the lattice by replacing the original Li ions. It resulted in the enlarging of Li layer spacing together with the reducing of the thickness of the transition metal slab. Such changes in crystal structure led to the increase in the diffusion coefficient of Li ions in the lattice (DLi). Calculated diffusion coefficient presented the highest Li-ion diffusion coefficient of 1.54 × 10−10 cm2 s−1 for the sample Rb0.01Li0.99Ni0.8Co0.15Al0.05O2. It was also in good accordance with the changes in Li slab thickness. Improved electrochemical performance in specific capacity, capacity retention and rate performance were observed. Among the samples synthesized, the Rb0.01Li0.99Ni0.8Co0.15Al0.05O2 sample exhibited the highest initial discharge capacity and the best rate performance. It delivered specific discharge capacities of 190.5, 177, 169, 161 and 151 mAh g−1 at 0.1C, 0.2C, 0.5C, 1C and 5C, respectively. It also showed the best cycle stability with capacity retention of 91.31% after 100 cycles at 2C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Pan, K. Kou, G. Wu, Y. Zhang, Y. Wang, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-015-3752-2

    Article  Google Scholar 

  2. Z. Jia, D. Lan, K. Lin, M. Qin, K. Kou, G. Wu, H. Wu, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-9909-z

    Article  Google Scholar 

  3. L. Croguennec, M.R. Palacin, J. Am. Chem. Soc. (2015). https://doi.org/10.1021/ja507828x

    Article  Google Scholar 

  4. A.A. Akl, S.A. Mahmoud, S.M. Al-Shomar, A.S. Hassanien, Mater. Sci. Semicond. Process. (2018). https://doi.org/10.1016/j.mssp.2017.10.007

    Article  Google Scholar 

  5. H. Zhang, K. Karki, Y. Huang, M.S. Whittingham, E.A. Stach, G. Zhou, J. Phys. Chem. C (2017). https://doi.org/10.1021/acs.jpcc.6b10220

    Article  Google Scholar 

  6. Z. Jia, K. Lin, G. Wu, H. Xing, H. Wu, Nano (2018). https://doi.org/10.1142/s1793292018300050

    Article  Google Scholar 

  7. C. Pan, K. Kou, Y. Zhang, Z. Li, G. Wu, Composites. B (2018). https://doi.org/10.1016/j.compositesb.2018.07.019

    Article  Google Scholar 

  8. J. Xu, F. Lin, M.M. Doeff, W. Tong, J. Mater. Chem. A (2017). https://doi.org/10.1039/c6ta07991a

    Article  Google Scholar 

  9. A. Feng, G. Wu, Y. Wang, C. Pan, J. Nanosci. Nanotechnol. (2017). https://doi.org/10.1166/jnn.2017.13987

    Article  Google Scholar 

  10. B.C. Park, H.B. Kim, H.J. Bang, J. Prakash, Y.K. Sun, Ind. Eng. Chem. Res. (2008). https://doi.org/10.1021/ie0715308

    Article  Google Scholar 

  11. W. Liu, X. Tang, M. Qin, G. Li, J. Deng, X. Huang, Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.08.112

    Article  Google Scholar 

  12. K. Du, H. Xie, G. Hu, Z. Peng, Y. Cao, F. Yu, ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b05629

    Article  Google Scholar 

  13. Y. Cho, J. Cho, J. Electrochem. Soc. (2010). https://doi.org/10.1149/1.3363852

    Article  Google Scholar 

  14. Y. Xu, X. Li, Z. Wang, H. Guo, B. Huang, Mater. Lett. (2015). https://doi.org/10.1016/j.matlet.2014.12.093

    Article  Google Scholar 

  15. Y.Q. Lai, M. Xu, Z.A. Zhang, C.H. Gao, P. Wang, Z.Y. Yu, J. Power Sources (2016). https://doi.org/10.1016/j.jpowsour.2016.01.079

    Article  Google Scholar 

  16. Y. Huang, Y. Huang, X. Hu, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.02.067

    Article  Google Scholar 

  17. G.R. Hu, X.R. Deng, Z.D. Peng, K. Du, Electrochim. Acta (2008). https://doi.org/10.1016/j.electacta.2007.10.040

    Article  Google Scholar 

  18. B. Huang, X. Li, Z. Wang, H. Guo, Mater. Lett. (2014). https://doi.org/10.1016/j.matlet.2014.06.002

    Article  Google Scholar 

  19. W. Liu, G. Hu, K. Du, Z. Peng, Y. Cao, Q. Liu, Mater. Lett. (2012). https://doi.org/10.1016/j.matlet.2012.05.100

    Article  Google Scholar 

  20. W. Liu, G. Hu, K. Du, Z. Peng, Y. Cao, Surf. Coat. Technol. (2013). https://doi.org/10.1016/j.surfcoat.2012.11.057

    Article  Google Scholar 

  21. B. Song, W. Li, S.M. Oh, A. Manthiram, ACS Appl. Mater. Interfaces (2017). https://doi.org/10.1021/acsami.7b00070

    Article  Google Scholar 

  22. N. Wu, H. Wu, H. Liu, Y. Zhang, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.01.044

    Article  Google Scholar 

  23. J. Duan, C. Wu, Y. Cao, K. Du, Z. Peng, G. Hu, Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.10.158

    Article  Google Scholar 

  24. S. Muto, K. Tatsumi, Y. Kojima, H. Oka, H. Kondo, K. Horibuchi, Y. Ukyo, J. Power Sources (2012). https://doi.org/10.1016/j.jpowsour.2012.01.071

    Article  Google Scholar 

  25. A.H. Tavakoli, H. Kondo, Y. Ukyo, A. Navrotsky, J. Electrochem. Soc. (2013). https://doi.org/10.1149/2.059302jes

    Article  Google Scholar 

  26. P. Yue, Z. Wang, J. Wang, H. Guo, X. Xiong, X. Li, Powder Technol. (2013). https://doi.org/10.1016/j.powtec.2012.12.061

    Article  Google Scholar 

  27. X. Li, Z. Xie, W. Liu, W. Ge, H. Wang, M. Qu, Electrochim. Acta (2015). https://doi.org/10.1016/j.electacta.2015.06.099

    Article  Google Scholar 

  28. H. Xie, K. Du, G. Hu, Z. Peng, Y. Cao, J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.5b12407

    Article  Google Scholar 

  29. K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari, J.J. Vittal, J. Mater. Chem. (2009). https://doi.org/10.1039/b817242k

    Article  Google Scholar 

  30. G. Wu, H. Wu, K. Wang, C. Zheng, Y. Wang, A. Feng, RSC Adv. (2016). https://doi.org/10.1039/c6ra11771f

    Article  Google Scholar 

  31. S. Lim, C.S. Yoon, J. Cho, Chem. Mater. (2008). https://doi.org/10.1021/cm8006364

    Article  Google Scholar 

  32. G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler, M. Wohlfahrt-Mehrens, J. Power Sources (2003). https://doi.org/10.1016/s0378-7753(03)00241-6

    Article  Google Scholar 

  33. Y. Ding, Y. Jiang, F. Xu, J. Yin, H. Ren, Q. Zhuo, Z. Long, P. Zhang, Electrochem. Commun. (2010). https://doi.org/10.1016/j.elecom.2009.10.023

    Article  Google Scholar 

  34. R. Dominko, M. Bele, J.M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon, J. Jamnik, Chem. Mater. (2007). https://doi.org/10.1021/cm062843g

    Article  Google Scholar 

  35. Y. Zhou, J. Wang, Y. Hu, R. O’Hayre, Z. Shao, Chem. Commun. (Camb) (2010). https://doi.org/10.1039/c0cc01721c

    Article  Google Scholar 

  36. A.S. Hassanien, A.A. Akl, A.H. Sáaedi, CrystEngCommun (2018). https://doi.org/10.1039/c7ce02173a

    Article  Google Scholar 

  37. N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher, M. Armand, J.M. Tarascon, Chem. Mater. (2009). https://doi.org/10.1021/cm803259x

    Article  Google Scholar 

  38. A.A. Akl, A.S. Hassanien, Superlattices Microstruct. (2015). https://doi.org/10.1016/j.spmi.2015.05.011

    Article  Google Scholar 

  39. K. Kang, Y.S. Meng, J. Bréger, C.P. Grey, G. Ceder, Science (2006). https://doi.org/10.1126/science.1122152

    Article  Google Scholar 

  40. Z. Zhang, D. Chen, C. Chang, RSC Adv. (2017). https://doi.org/10.1039/c7ra10053a

    Article  Google Scholar 

  41. L. Guan, P. Xiao, T. Lv, D. Zhang, C. Chang, J. Electrochem. Soc. (2017). https://doi.org/10.1149/2.1731713jes

    Article  Google Scholar 

  42. N. Li, Y.S. He, X. Wang, W. Zhang, Z.F. Ma, D. Zhang, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.01.137

    Article  Google Scholar 

  43. B.H. Toby, J. Appl. Crystallogr. (2001). https://doi.org/10.1107/S0021889801002242

    Article  Google Scholar 

  44. W.S. Yoon, K.Y. Chung, J. McBreen, X.Q. Yang, Electrochem. Commun. (2006). https://doi.org/10.1016/j.elecom.2006.06.005

    Article  Google Scholar 

  45. X. Li, W. Ge, H. Wang, X. Yan, B. Deng, T. Chen, M. Qua, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2016.12.138

    Article  Google Scholar 

  46. M. Guilmard, C. Pouillerie, L. Croguennec, C. Delmas, Solid State Ion (2003). https://doi.org/10.1016/S0167-2738(03)00106-1

    Article  Google Scholar 

  47. M. Guilmard, A. Rougier, M. Grüne, L. Croguennec, J. Power Sources (2003). https://doi.org/10.1016/s0378-7753(03)00012-0

    Article  Google Scholar 

  48. Y. Gao, X. Wang, J. Ma, Z. Wang, L. Chen, Chem. Mater. (2015). https://doi.org/10.1021/acs.chemmater.5b00875

    Article  Google Scholar 

  49. Z.Y. Li, J. Zhang, R. Gao, H. Zhang, Z. Hu, X. Liu, ACS Appl. Mater. Interfaces (2016). https://doi.org/10.1021/acsami.6b04073

    Article  Google Scholar 

  50. Z. Huang, Z. Wang, X. Zheng, H. Guo, X. Li, Q. Jing, Z. Yang, Electrochim. Acta (2015). https://doi.org/10.1016/j.electacta.2015.09.151

    Article  Google Scholar 

  51. D. Mohanty, J. Li, D.P. Abraham, A. Huq, E.A. Payzant, D.L. Wood, C. Daniel, Chem. Mater. (2014). https://doi.org/10.1021/cm5031415

    Article  Google Scholar 

  52. P. Gao, R. Ishikawa, E. Tochigi, A. Kumamoto, N. Shibata, Y. Ikuhara, Chem. Mater. (2017). https://doi.org/10.1021/acs.chemmater.6b03659

    Article  Google Scholar 

  53. J.R. Croy, K.G. Gallagher, M. Balasubramanian, B.R. Long, M.M. Thackeray, J. Electrochem. Soc. (2013). https://doi.org/10.1149/2.049403jes

    Article  Google Scholar 

  54. M. Sathiya, A.M. Abakumov, D. Foix, G. Rousse, K. Ramesha, M. Saubanere, M.L. Doublet, H. Vezin, C.P. Laisa, A.S. Prakash, D. Gonbeau, G. VanTendeloo, J.M. Tarascon, Nat. Mater. (2015). https://doi.org/10.1038/nmat4137

    Article  Google Scholar 

  55. L. Pan, Y. Xia, B. Qiu, H. Zhao, H. Guo, K. Jia, Q. Gu, Z. Liu, J. Power Sources (2016). https://doi.org/10.1016/j.jpowsour.2016.07.064

    Article  Google Scholar 

  56. Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. (2014). https://doi.org/10.1021/nl5008568

    Article  Google Scholar 

Download references

Funding

The research was supported by Science and Technology Commission of Shanghai Municipality (14520503100 and 201310-JD-B2-009) and Shanghai Municipal Education Commission (15ZZ095).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongyun Zhang or Chengkang Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Xiao, P., Zhang, D. et al. Enhanced rate performance and cycle stability of LiNi0.8Co0.15Al0.05O2 via Rb doping. J Mater Sci: Mater Electron 29, 21119–21129 (2018). https://doi.org/10.1007/s10854-018-0260-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0260-1

Navigation