Skip to main content
Log in

Boron improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by enhancing the crystal growth with increased lattice ordering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Boron-modified Li(Ni0.8Co0.1Mn0.1)1−xBxO2 cathode materials(NCM811) were successfully prepared by a nano-milling assisted solid-state approach. X-ray diffraction investigations showed that the materials are solid solutions with a layered structure. SEM observations implied that the doped B ions promoted the growth of the target crystal with well-developed facets since it will form liquid phase at lower temperature. The intensity ratio of I(003)/I(104) raised with the increase in Boron doping concentration, until a maximum value of 1.453 was observed at x = 0.01. Further Rietveld refinements revealed that boron ions occupy the crystal lattice in the transition metal slab which helps to promote the lattice ordering by decreasing the Li/Ni ionic mixing. Such B promoted NCM811 cathode materials were confirmed to have an improved diffusion coefficient with a reduced interfacial resistance by subsequent CV and EIS measurements. From the electrochemical test, those B modified NCM811 cathode materials presented enhanced electrochemical performance. Among the synthesized samples, Li(Ni0.8Co0.1Mn0.1)0.99B0.01O2 exhibited the best specific capacity, with 194.7 mAh g−1 and 166.8 mAh g−1 at 0.1C and 5C respectively. The capacity retention at 0.5C was also confirmed as 98.2% after 100 cycles. Such improvement can be explained by the reduced Li/Ni ionic mixing, the increased Li ionic diffusion and the reduced interfacial resistance caused by the promoted growth of the B doped NCM811 crystals. Compared to those NCM811 materials reported elsewhere, the material obtained by this approach showed high potential for future application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. N. Recham, J.N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, J.M. Tarascon, Nat. Mater. (2009). https://doi.org/10.1038/nmat2590

    Article  Google Scholar 

  2. Y.K. Sun, S.T. Myung, B.C. Park, J. Prakash, I. Belharouak, K. Amine, Nat. Mater. (2009). https://doi.org/10.1038/nmat2418

    Article  Google Scholar 

  3. Y.K. Sun, Z. Chen, H.J. Noh, D.J. Lee, H.G. Jung, Y. Ren, S. Wang, C.S. Yoon, S.T. Myung, K. Amine, Nat. Mater. (2012). https://doi.org/10.1038/nmat3435

    Article  Google Scholar 

  4. G. Derrien, J. Hassoun, S. Panero, B. Scrosati, Adv. Mater. (2007). https://doi.org/10.1002/adma.200700748

    Article  Google Scholar 

  5. Z.M. Yu, L.C. Zhao, T. Nonferr, Metal. Soc. (2007). https://doi.org/10.1016/S1003-6326(07)60152-6

    Article  Google Scholar 

  6. M.H. Kim, H.S. Shin, D. Shin, Y.K. Sun, J. Power Sources (2006). https://doi.org/10.1016/j.jpowsour.2005.11.083

    Article  Google Scholar 

  7. S.M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.J. Cho, K.B. Kim, K.Y. Chung, X.Q. Yang, K.W. Nam, ACS Appl. Mater. Interfaces. (2014). https://doi.org/10.1021/am506712c

    Article  Google Scholar 

  8. K. Min, K. Kim, C. Jung, S.W. Seo, Y.Y. Song, H.S. Lee, J. Shin, E. Cho, J. Power Sources (2016). https://doi.org/10.1016/j.jpowsour.2016.03.017

    Article  Google Scholar 

  9. S. Gao, X. Zhan, Y.T. Cheng, J. Power Sources (2019). https://doi.org/10.1016/j.jpowsour.2018.10.094

    Article  Google Scholar 

  10. Z. Huang, Z. Wang, X. Zheng, H. Guo, X. Li, Q. Jing, Z. Yang, RSC Adv. (2015). https://doi.org/10.1039/c5ra16633k

    Article  Google Scholar 

  11. L. Liu, K. Sun, N. Zhang, T. Yang, J. Solid State Electrochem. (2008). https://doi.org/10.1007/s10008-008-0695-z

    Article  Google Scholar 

  12. K. Min, S.W. Seo, Y.Y. Song, H.S. Lee, E. Cho, Phys. Chem. Chem. Phys. (2017). https://doi.org/10.1039/c6cp06270a

    Article  Google Scholar 

  13. S.W. Woo, S.T. Myung, H. Bang, D.W. Kim, Y.K. Sun, Electrochim. Acta (2009). https://doi.org/10.1016/j.electacta.2009.01.048

    Article  Google Scholar 

  14. M. Eilers-Rethwisch, M. Winter, F.M. Schappacher, J. Power Sources (2018). https://doi.org/10.1016/j.jpowsour.2018.02.080

    Article  Google Scholar 

  15. L.J. Li, X.H. Li, Z.X. Wang, H.J. Guo, P. Yue, W. Chen, L. Wu, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2010.07.148

    Article  Google Scholar 

  16. R. Zhao, Z. Yang, J. Liang, D. Lu, C. Liang, X. Guan, A. Gao, H. Chen, J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.07.230

    Article  Google Scholar 

  17. Z. Huang, Z. Wang, Q. Jing, H. Guo, X. Li, Z. Yang, Electrochim. Acta (2016). https://doi.org/10.1016/j.electacta.2016.01.139

    Article  Google Scholar 

  18. X. Li, K. Zhang, M. Wang, Y. Liu, M. Qu, W. Zhao, J. Zheng, Sustain Energy Fuels (2018). https://doi.org/10.1039/c7se00513j

    Article  Google Scholar 

  19. Q. Chen, C. Du, D. Qu, X. Zhang, Z. Tang, RSC Adv. (2015). https://doi.org/10.1039/c5ra14376d

    Article  Google Scholar 

  20. F. Schipper, M. Dixit, D. Kovacheva, M. Talianker, O. Haik, J. Grinblat, E.M. Erickson, C. Ghanty, D.T. Major, B. Markovsky, D. Aurbach, J. Mater. Chem. A (2016). https://doi.org/10.1039/c6ta06740a

    Article  Google Scholar 

  21. C. Qin, J. Cao, J. Chen, G. Dai, T. Wu, Y. Chen, Y. Tang, A. Li, Y. Chen, Dalton Trans. (2016). https://doi.org/10.1039/c6dt01764a

    Article  Google Scholar 

  22. L. Pan, Y. Xia, B. Qiu, H. Zhao, H. Guo, K. Jia, Q. Gu, Z. Liu, J. Power Sources (2016). https://doi.org/10.1016/j.jpowsour.2016.07.064

    Article  Google Scholar 

  23. K. Saravanan, M.V. Reddy, P. Balaya, H. Gong, B.V.R. Chowdari, J.J. Vittal, J. Mater. Chem. (2009). https://doi.org/10.1039/b817242k

    Article  Google Scholar 

  24. G. Arnold, J. Garche, R. Hemmer, S. Ströbele, C. Vogler, M. Wohlfahrt-Mehrens, J. Power Sources (2003). https://doi.org/10.1016/s0378-7753(03)00241-6

    Article  Google Scholar 

  25. R. Dominko, M. Bele, J.M. Goupil, M. Gaberscek, D. Hanzel, I. Arcon, J. Jamnik, Chem. Mater. (2007). https://doi.org/10.1021/cm062843g

    Article  Google Scholar 

  26. Y. Zhou, J. Wang, Y. Hu, R. O’Hayre, Z. Shao, Chem. Commun. (2010). https://doi.org/10.1039/c0cc01721c

    Article  Google Scholar 

  27. N. Recham, L. Dupont, M. Courty, K. Djellab, D. Larcher, M. Armand, J.M. Tarascon, Chem. Mater. (2009). https://doi.org/10.1021/cm803259x

    Article  Google Scholar 

  28. L. Guan, P. Xiao, T.J. Lv, D.Y. Zhang, C.K. Chang, J. Electrochem. Soc. (2017). https://doi.org/10.1149/2.1731713jes

    Article  Google Scholar 

  29. T.J. Lv, L. Guan, P. Xiao, D.Y. Zhang, C.K. Chang, J. Mater. Sci. (2019). https://doi.org/10.1007/s10853-018-03194-w

    Article  Google Scholar 

  30. T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, H. Komori, Electrochim. Acta (1993). https://doi.org/10.1016/0013-4686(93)80046-3

    Article  Google Scholar 

  31. X.T. Yin, W.D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F.Y. Wu, D. Dastan, H. Garmestani, Z. Shi, S. Ţălu, J. Mater. Sci. (2019). https://doi.org/10.1007/s10854-019-01840-w

    Article  Google Scholar 

  32. D. Dastan, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1309-3

    Article  Google Scholar 

  33. D. Dastan, J. At. Mol. Condens. Nano Phys. 2, 109–119 (2015)

    Google Scholar 

  34. Z.L. Zhang, D.H. Chen, C.K. Chang, RSC Adv. (2017). https://doi.org/10.1039/c7ra10053a

    Article  Google Scholar 

  35. P. Xiao, T.J. Lv, X.P. Chen, C.K. Chang, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-01657-9

    Article  Google Scholar 

  36. Y. Zhao, L. Peng, B. Liu, G. Yu, Nano Lett. (2014). https://doi.org/10.1021/nl5008568

    Article  Google Scholar 

  37. M.D. Levi, J. Electrochem. Soc. (1999). https://doi.org/10.1149/1.1391759

    Article  Google Scholar 

  38. X. Wu, S.H. Chang, Y.J. Park, K.S. Ryu, J. Power Sources (2004). https://doi.org/10.1016/j.jpowsour.2004.05.043

    Article  Google Scholar 

  39. M. Zhang, H. Zhao, M. Tan, J. Liu, Y. Hu, S. Liu, X. Shu, H. Li, Q. Ran, J. Cai, X. Liu, J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2018.09.281

    Article  Google Scholar 

  40. M.X. Dong, X.Q. Li, Z.X. Wang, X.H. Li, H.J. Guo, Z.J. Huang, T. Nonferr, Metal. Soc. (2017). https://doi.org/10.1016/S1003-6326(17)60132-8

    Article  Google Scholar 

Download references

Funding

The research was supported by Science and Technology Commission of Shanghai Municipality (14520503100 and 201310-JD-B2-009) and Shanghai Municipal Education Commission (15ZZ095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengkang Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., He, H., Zhang, D. et al. Boron improved electrochemical performance of LiNi0.8Co0.1Mn0.1O2 by enhancing the crystal growth with increased lattice ordering. J Mater Sci: Mater Electron 30, 18200–18210 (2019). https://doi.org/10.1007/s10854-019-02174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02174-3

Navigation