Skip to main content
Log in

Reliability of fluoride phosphor K2XF6:Mn4+ (K2SiF6:Mn4+, K2(Si,Ge)F6:Mn4+, K2TiF6:Mn4+) for LED application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The red fluoride phosphor K2XF6:Mn4+ was prepared by co-precipitation with partial HF in placed with glacial acetic acid. The phase structures and photoluminescence (PL) properties of the red fluoride phosphor K2XF6:Mn4+ phosphor have been investigated in detail. Reliability test show that the relative PL intensity of KSFM, K(S,G)FM and KTFM decreased by 14.95%, 18.22% and 67.21% after the ambient condition of high temperature and high humidity (85 °C/RH 85%) for the exposure time of 168 h. The thermal cycling testing results show that the relative PL intensity of KSFM, K(S,G)FM and KTFM decreased by 0.41%, 5.55% and 1.14% after storing the phosphors into an ambient condition of 120 °C for 1 h and − 40 °C for 1 h by turns for five times. The relative PL intensity of KSFM, K(S,G)FM and KTFM decreased by 89.09%, 91.93% and 99.94% after soaking into boiled water for 3 h. It can be summarized that KSFM has the best reliability and KTFM has the worst reliability. Then by mixing the YAG:Ce3+ and KXFM phosphor and commercial green phosphor with appropriate proportion of the components, it can be found that the luminous efficacy of K2XF6:Mn4+ (KSFM, K(S,G)FM, KTFM) after 85°C/RH 85% decreased by 0.14%, 0.54% and 1.06%, after thermal cycling decreased by 2.60%, 1.53% and 3.17% and after hydrolysis decreased by 14.49%, 9.65% and 47.66%. The KTFM after hydrolysis and YAG:Ce3+ encapsulated WLEDs have the most reduced luminous efficacy. Moreover, the luminous efficacy of K(S,G)FM after hydrolysis and YAG:Ce3+ encapsulated WLEDs is better than KSFM after hydrolysis and YAG:Ce3+ encapsulated WLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S. Nizamoglu, T. Erdem, H.V. Demir, High scotopic/photopic ratio white-light-emitting diodes integrated with semiconductor nanophosphors of colloidal quantum dots. Opt. Lett. 36, 1893–1895 (2011)

    Article  CAS  Google Scholar 

  2. J. Lim, S. Jun, E. Jang, H. Baik, H. Kim, J. Cho, Preparation of highly luminescent nanocrystals and their application to light-emitting diodes. Adv. Mater. 19, 1927–1932 (2007)

    Article  CAS  Google Scholar 

  3. M.H. Chang, D. Das, P.V. Varde, M. Pecht, Light emitting diodes reliability review. Microlelctron. Relieab. 52, 762–782 (2012)

    Article  Google Scholar 

  4. H. Daicho, T. Iwasaki, K. Enomoto, Y. Sasaki, Y. Maeno et al., A novel phosphor for glareless white light-emitting diodes. Nat. Commun. 3, 1132–1139 (2012)

    Article  Google Scholar 

  5. I. Ahemen, D.K. De, A.N. Amah, A review of solid state white light emitting diode and its potentials for replacing conventional lighting technologies in developing countries. Appl. Phys. Res. 6, 1188–1194 (2014)

    Google Scholar 

  6. T.Y. Seong, J. Han, H. Amano, H. Morkoc, III-Nitride based light emitting diodes and applications. Top. Appl. Phys. 126, V-VI (2014)

    Google Scholar 

  7. C. J. Humphreys, Solid-state lighting. Mrs. Bull. 33 (2008) 459–470

    Article  Google Scholar 

  8. S. Neeraj, N. Kijima, A.K. Cheetham, Novel red phosphors for solid-state lighting: the system NaM(WO4)2–x (MoO4)x:Eu3+ (M = Gd, Y, Bi). Chem. Phys. Lett. 387, 2–6 (2004)

    Article  CAS  Google Scholar 

  9. H. Zhan, Z. Xu, C. Tian, Y. Wang, M. Chen et al., Achieving standard wide color gamut by tuning LED backlight and color filter spectrum in LCD. J. Soc. Inf. Display. 22, 545–551 (2015)

    Article  Google Scholar 

  10. S. Lee, M.G. Kim, J.B. Song, S.Y. Kim, S. Tamura et al., Highly efficient and wide color gamut white OLED architecture for display application. Sid Sym. Digest. Tech. 39, 826–829 (2008)

    Article  Google Scholar 

  11. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin Heidelberg, 1994)

    Book  Google Scholar 

  12. M.H. Du, Chemical trends of Mn4+ emission in solids. J. Mater. Chem. C. 2, 2475–2481 (2014)

    Article  CAS  Google Scholar 

  13. H.F. Sijbom, J.J. Joos, L.I.D.J. Martin et al., Luminescent behavior of the K2SiF6:Mn4+ red phosphor at high fluxes and at the microscopic level. ECS J. Solid State. Sci. Technol. 5, 3040–3048 (2016)

    Article  Google Scholar 

  14. C. Liao, R. Cao, Z. Ma, Y. Li et al., Synthesis of K2SiF6:Mn4+, phosphor from SiO2, powders via redox reaction in HF/ KMnO4, solution and their application in warm-white LED. J. Am. Ceram. Soc. 96, 3552–3556 (2013)

    Article  CAS  Google Scholar 

  15. S. Adachi, T. Takahashi, Direct synthesis and properties of K2SiF6:Mn4+ phosphor by wet chemical etching of Si wafer. J. Appl. Phys. 104, 317 (2008)

    Article  Google Scholar 

  16. Z.L. Wang, Y.Y. Zhou, Z.Y. Yang, Y. Liu et al., Synthesis of K2XF6:Mn4+, (X = Ti, Si and Ge) red phosphors for white LED applications with low-concentration of HF. Opt. Mater. 49, 235–240 (2015)

    Article  CAS  Google Scholar 

  17. H. Zhu, C.C. Lin, W. Luo, S. Shu et al., Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat. Commun. 5, 4312 (2014)

    Article  CAS  Google Scholar 

  18. T.M. Wang, Y. Gao, Z.P. Chen, Q.Y. Huang, B.L. Song, Y.H. Huang, S. Liao, H.X. Zhang, Cation exchange synthesis and cations doped effects of red emitting phosphors K2TiF6:Mn4+, M+(M = Mg, Ca, Sr, Ba, and Zn). J. Mater Sci. 28, 1878–11885 (2017)

    Google Scholar 

  19. T.M. Wang, Y. Gao, Z.P. Chen, Q.Y. Huang, L.N. Wu, Y.H. Huang, S. Liao, H.X. Zhang, The formation of KF induced red-emitting phosphors K2TiF6*BaF(HF2):Mn4+ by cation exchange. J. Lumin. 188, 307–312 (2017)

    Article  CAS  Google Scholar 

  20. L. Huang, Y. Zhu, X. Zhang, R. Zou et al., HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1−xF6: xMn4+ for warm white light-emitting diodes. Chem. Mater. 28, 1495–1502 (2016)

    Article  CAS  Google Scholar 

  21. Y.K. Xu, S. Adachi, Properties of Na2SiF6:Mn4+ and Na2GeF6:Mn4+ red phosphors synthesized by wet chemical etching. J. Appl. Phys. 105, 339 (2009)

    Google Scholar 

  22. Y.W. Zhu, L. Huang, R. Zou, J.H. Zhang et al., Hydrothermal synthesis, morphology and photoluminescent properties of an Mn4+-doped novel red fluoride phosphor elpasolite K2LiAlF6. J. Mater. Chem. C. 4, 5690–5695 (2016)

    Article  CAS  Google Scholar 

  23. L.L. Wei, C. Lin, M.H. Fang, M. Brik et al., A low-temperature co-precipitation approach to synthesize fluoride phosphors K2MF6:Mn4+ (M = Ge, Si) for white LED applications. J. Mater. Chem. C. 3, 1655–1660 (2015)

    Article  CAS  Google Scholar 

  24. L. Lv, Z. Chen, G. Liu, S. Huang, Y. Pan, Optimized photoluminescence of red phosphor K2TiF6:Mn4+ synthesized at room temperature and its formation mechanism. J. Mater. Chem. C. 3, 1935–1941 (2015)

    Article  CAS  Google Scholar 

  25. A.A. Setlur, R.J. Lyons, J.E. Murphy, N.P. Kumar et al., Blue Light-emitting diode phosphors based upon oxide, oxyhalide, and halide hosts. ECS J. Solid State. Sci. Technol. 2, 3059–3070 (2012)

    Article  Google Scholar 

  26. R. Kasa, Y. Arai, T. Takahashi, S. Adachi, Photoluminescent properties of cubic K2MnF6 particles synthesized in metal immersed HF/KMnO4 solutions. J. Appl. Phys. 108, 339 (2015)

    Google Scholar 

  27. M.G. Brik, A.M. Srivastava, On the optical properties of the Mn4+ ion in solids. J. Lumin. 133, 69–72 (2013)

    Article  CAS  Google Scholar 

  28. T. Takahashi, S. Adachi, Mn4+-activated red photoluminescence in K2SiF6 phosphor. J. Electrochem. Soc. 155, 183–188 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Science and Technology Planning Project of Zhejiang Province, China (2018C01046), Enterprise-funded Latitudinal Research Projects (J2016-141; J2017-171; J2017-293 and J2017-243), Sponsored by Shanghai Sailing Program (18YF1422500) and Research start-up project of Shanghai Institute of Technology (YJ2018-9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Zou or Bobo Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, F., Zou, J., Yang, B. et al. Reliability of fluoride phosphor K2XF6:Mn4+ (K2SiF6:Mn4+, K2(Si,Ge)F6:Mn4+, K2TiF6:Mn4+) for LED application. J Mater Sci: Mater Electron 29, 21061–21071 (2018). https://doi.org/10.1007/s10854-018-0253-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0253-0

Navigation