Skip to main content
Log in

Treatment with Na2SO3 alkaline reductant to restore luminescence intensity and improve the moisture resistance of deteriorated Mn4+-doped fluoride phosphors

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Enhancing the moisture resistance of Mn4+-doped fluoride phosphors is crucial for solid-state lighting (SSL) and liquid crystal display (LCD). Herein, the deteriorated K2AF6:Mn4+ (A = Ti, Si) phosphors were restored with Na2SO3 alkaline reductant, and optimal treatment conditions were systematically determined. The kinetic process for luminescence degradation and restoration, as well as the corresponding reparation mechanism were investigated in detail. These results showed that SO32− anion can reduce Mn4+ to Mn2+, rapidly remove the dark-brown layer of the degradation product, and restore the luminescence intensity of K2AF6:Mn4+ to more than 95%. Therefore, the restored K2TiF6: Mn4+ and K2SiF6: Mn4+ samples exhibit excellent moisture resistance, maintaining to be 66 and 76% of the initial intensity after immersing in deionized water for 300 min. Furthermore, fabricated white light-emitting device using the restored K2TiF6: Mn4+ phosphor also possess color rendering index of 94.2 and correlated color temperature of 3270 K. Our results provide a feasible strategy to significantly improve the moisture resistance of fluoride phosphors, demonstrating a great promise in phosphor-converted white-LED toward lighting and display field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Ye S, Xiao F, Pan YX, Ma YY, Zhang QY (2010) Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mat Sci Eng R 71(1):1–34. https://doi.org/10.1016/j.mser.2010.07.001

    Article  CAS  Google Scholar 

  2. Lin CC, Meijerink A, Liu RS (2016) Critical red components for next-generation white LEDs. J Phys Chem Lett 7(3):495–503. https://doi.org/10.1021/acs.jpclett.5b02433

    Article  CAS  Google Scholar 

  3. Li Y, Qi S, Li P, Wang Z (2017) Research progress of Mn doped phosphors. RSC Adv 7(61):38318–38334. https://doi.org/10.1039/C7RA06026B

    Article  CAS  Google Scholar 

  4. Nguyen HD, Liu RS (2016) Narrow-band red-emitting Mn4+-doped hexafluoride phosphors: synthesis, optoelectronic properties, and applications in white light-emitting diodes. J Mater Chem C 4(46):10759–10775. https://doi.org/10.1039/C6TC03292C

    Article  CAS  Google Scholar 

  5. Song E, Wang J, Shi J, Deng T, Ye S, Peng M, Wang J, Wondraczek J, Zhang Q (2017) Highly efficient and thermally stable K3AlF6: Mn4+ as a red phosphor for ultra-high-performance warm white light-emitting diodes. ACS Appl Mater Interfaces 9(10):8805–8812. https://doi.org/10.1021/acsami.7b00749

    Article  CAS  Google Scholar 

  6. Deng TT, Song EH, Zhou YY, Wang LY, Ye S, Zhang QY (2017) Stable narrowband red phosphor K3GaF6: Mn4+ derived from hydrous K2GaF5(H2O) and K2MnF6. J Mater Chem C 5(37):9588–9596. https://doi.org/10.1039/C7TC03116E

    Article  CAS  Google Scholar 

  7. Ming H, Liu S, Liu L, Peng J, Fu J, Du F, Ye X (2018) Highly regular, uniform K3ScF6: Mn4+ phosphors: facile synthesis, microstructures, photoluminescence properties, and application in light-emitting diode devices. ACS Appl Mater Interfaces 10(23):19783–19795. https://doi.org/10.1021/acsami.8b01885

    Article  CAS  Google Scholar 

  8. Ming H, Liu L, He S, Peng J, Du F, Fu J, Yang F, Ye X (2019) An ultra-high yield of spherical K2NaScF6: Mn4+ red phosphor and its application in ultra-wide color gamut liquid crystal displays. J Mater Chem C 7(24):7237–7248. https://doi.org/10.1039/C9TC02295C

    Article  CAS  Google Scholar 

  9. Ming H, Zhang J, Liu L, Peng J, Du F, Ye X, Yang Y, Nie H (2018) A novel Cs2NbOF5: Mn4+ oxyfluoride red phosphor for light-emitting diode devices. Dalton Trans 47(45):16048–16056. https://doi.org/10.1039/C8DT02817F

    Article  CAS  Google Scholar 

  10. Zhou YY, Song EH, Brik MG, Wang YJ, Hu T, Xia ZG, Zhang QY (2019) Non-equivalent Mn4+ doping into A2NaScF6 (A= K, Rb, Cs) hosts toward short fluorescence lifetime for backlight display application. J Mater Chem C 7(30):9203–9210. https://doi.org/10.1039/C9TC02564B

    Article  CAS  Google Scholar 

  11. Jiang C, Li L, Brik MG, Lin L, Peng M (2019) Epitaxial growth via anti-solvent-induced deposition towards a highly efficient and stable Mn4+ doped fluoride red phosphor for application in warm WLEDs. J Mater Chem C 7(20):6077–6084. https://doi.org/10.1039/C9TC01433K

    Article  CAS  Google Scholar 

  12. Zhou Y, Song E, Deng T, Wang Y, Xia Z, Zhang Q (2019) Surface passivation toward highly stable Mn4+-activated red-emitting fluoride phosphors and enhanced photostability for white LEDs. Adv Mater Interfaces 6(9):1802006. https://doi.org/10.1002/admi.201802006

    Article  CAS  Google Scholar 

  13. Wan P, Liang Z, Luo P, Lian S, Zhou W, Liu RS (2021) Reconstruction of Mn4+-free shell achieving highly stable red-emitting fluoride phosphors for light-emitting diodes. Chem Eng J 426:131350. https://doi.org/10.1016/j.cej.2021.131350

    Article  CAS  Google Scholar 

  14. Zhong X, Deng D, Wang T, Li Y, Yu Y, Qiang J, Liao S, Huang Y, Long J (2022) High water resistance and luminescent thermal stability of LiyNa(2–y)SiF6: Mn4+ red-emitting phosphor induced by codoping of Li+. Inorg Chem 61:5484–5494. https://doi.org/10.1021/acs.inorgchem.1c03488

    Article  CAS  Google Scholar 

  15. Zhou Y, Yu C, Song E, Wang Y, Ming H, Xia Z, Zhang Q (2020) Three birds with one stone: K2SiF6: Mn4+ single crystal phosphors for high-power and laser-driven lighting. Adv Optical Mater 8(23):2000976. https://doi.org/10.1002/adom.202000976

    Article  CAS  Google Scholar 

  16. Jia Y, Pan Y, Li Y, Zhang L, Lian H, Lin J (2020) Improved moisture-resistant and luminescence properties of a red phosphor based on Dodec-fluoride K3RbGe2F12: Mn4+ through surface modification. Inorg Chem 60(1):231–238. https://doi.org/10.1021/acs.inorgchem.0c02876

    Article  CAS  Google Scholar 

  17. Tsai YT, Nguyen HD, Lazarowska A, Mahlik S, Grinberg M, Liu RS (2016) Improvement of the water resistance of a narrow-band red-emitting SrLiAl3N4: Eu2+ phosphor synthesized under high isostatic pressure through coating with an organosilica layer. Angew Chem Int Ed 55(33):9652–9656. https://doi.org/10.1002/anie.201604427

    Article  CAS  Google Scholar 

  18. Huang L, Liu Y, Yu J, Zhu Y, Pan F, Xuan T, Brik MG, Wang C, Wang J (2018) Highly stable K2SiF6: Mn4+@K2SiF6 composite phosphor with narrow red emission for white LEDs. ACS Appl Mater Interfaces 10(21):18082–18092. https://doi.org/10.1021/acsami.8b03893

    Article  CAS  Google Scholar 

  19. Lin H, Liu Y, Si S, Brik MG, Wang C, Wang J (2018) A new reductive DL-mandelic acid loading approach for moisture-stable Mn4+ doped fluorides. Chem Commun 54(84):11857–11860. https://doi.org/10.1039/C8CC05850D

    Article  Google Scholar 

  20. Yu H, Wang B, Bu X, Liu Y, Chen J, Huang Z, Fang M (2020) A facile in situ surface-coating passivation strategy for improving the moisture resistance of Mn4+-activated fluoride red phosphor. Ceram Int 46(11):18281–18286. https://doi.org/10.1016/j.ceramint.2020.05.044

    Article  CAS  Google Scholar 

  21. Liu Y, Zhou Z, Huang L, Brik MG, Si S, Lin L, Xuan T, Liang H, Qiu J, Wang J (2019) High-performance and moisture-resistant red-emitting Cs2SiF6: Mn4+ for high-brightness LED backlighting. J Mater Chem C 7(8):2401–2407. https://doi.org/10.1039/C8TC06083E

    Article  CAS  Google Scholar 

  22. Liu L, Wu D, He S, Ouyang Z, Zhang J, Du F, Peng J, Yang F, Ye X (2020) A reverse strategy to restore the moisture-deteriorated luminescence properties and improve the humidity resistance of Mn4+-doped fluoride phosphors. Chem-Asian J 15(20):3326–3337. https://doi.org/10.1002/asia.202000863

    Article  CAS  Google Scholar 

  23. Qiang J, Wang L, Wang T, Yu Y, Deng D, Wu C, Liao S, Li S (2022) Improvement of the luminescent thermal stability and water resistance of K2SiF6: Mn4+ by surface passivation. Ceram Int 48(12):17253–17260. https://doi.org/10.1016/j.ceramint.2022.02.285

    Article  CAS  Google Scholar 

  24. Bode H, Jenssen H, Bandte F (1953) Über eine neue Darstellung des Kalium-hexafluoromanganats (IV). Angew Chem 65(11):304–304. https://doi.org/10.1002/ange.19530651108

    Article  CAS  Google Scholar 

  25. Deng T, Song E, Zhou Y, Yuan J (2019) Implementation of high color quality, high luminous warm WLED using efficient and thermally stable Rb3AlF6: Mn4+ as red color converter. J Alloy Compds 795:453–461. https://doi.org/10.1016/j.jallcom.2019.04.305

    Article  CAS  Google Scholar 

  26. Huang D, Zhu H, Deng Z, Zou Q, Lu H, Yi X, Guo W, Lu C, Chen X (2019) Moisture-resistant Mn4+-doped core-shell-structured fluoride red phosphor exhibiting high luminous efficacy for warm white light-emitting diodes. Angew Chem Int Ed 58(12):3843–3847. https://doi.org/10.1002/ange.201813363

    Article  CAS  Google Scholar 

  27. He S, Xu F, Han T, Lu Z, Wang W, Peng J, Du F, Yang F, Ye X (2020) A Mn4+-doped oxyfluoride phosphor with remarkable negative thermal quenching and high color stability for warm WLEDs. Chem Eng J 392:123657. https://doi.org/10.1016/j.cej.2019.123657

    Article  CAS  Google Scholar 

  28. Arunkumar P, Kim YH, Kim HJ, Unithrattil S, Im WB (2017) Hydrophobic organic skin as a protective shield for moisture-sensitive phosphor-based optoelectronic devices. ACS Appl Mater Interfaces 9(8):7232–7240. https://doi.org/10.1021/acsami.6b14012

    Article  CAS  Google Scholar 

  29. Zhu H, Lin CC, Luo W, Shu S, Liu Z, Liu Y, Kong J, Ma E, Cao Y, Liu RS (2014) Highly efficient non-rare-earth red emitting phosphor for warm white light-emitting diodes. Nat Commun 5:4312. https://doi.org/10.1038/ncomms5312

    Article  CAS  Google Scholar 

  30. Kim M, Park WB, Bang B, Kim CH, Sohn KS (2015) Radiative and non-radiative decay rate of K2SiF6: Mn4+ phosphors. J Mater Chem C 3(21):5484–5489. https://doi.org/10.1039/C5TC00757G

    Article  CAS  Google Scholar 

  31. Siriwardane RV, Cook JM (1986) Interactions of SO2 with sodium deposited on CaO. J Colloid Interf Sci 114(2):525–535. https://doi.org/10.1016/0021-9797(86)90438-8

    Article  CAS  Google Scholar 

  32. Peisert H, Chassé T, Streubel P, Meisel A, Szargan R (1994) Relaxation energies in XPS and XAES of solid sulfur compounds-ScienceDirect. J Electron Spectrosc 68(68):321–328. https://doi.org/10.1016/0368-2048(94)02129-5

    Article  CAS  Google Scholar 

  33. Yao F, Wang L, Lv Y, Zhuang Y, Zhou TL, Xie RJ (2018) Composition-dependent thermal degradation of red-emitting (Ca1-xSrx)AlSiN3: Eu2+ phosphors for high color rendering white LEDs. J Mater Chem C 6(4):890–898. https://doi.org/10.1039/C7TC04356B

    Article  CAS  Google Scholar 

  34. Zhu J, Wang L, Zhou T, Cho Y, Suehiro T, Takeda T, Ming L, Sekiguchi T, Hirosaki N, Xie RJ (2015) Moisture-induced degradation and its mechanism of (Sr, Ca)AlSiN3: Eu2+, a red-color-converter for solid state lighting. J Mater Chem C 3(13):3181–3188. https://doi.org/10.1039/C4TC02824D

    Article  CAS  Google Scholar 

  35. Wei Q, Yang Z, Liu Y, Zhou Q, Wang Z (2020) Communication—Highly Efficient Red-Emitting Phosphor Na2SiF6: Mn4+ Prepared in H3PO4 Environment. ECS J Solid State Sci Tech 9(2):026004. https://doi.org/10.1149/2162-8777/ab709b

    Article  CAS  Google Scholar 

  36. Zhong X, Deng D, Wang T, Li Y, Yu Y, Qiang J, Liao S, Huang Y, Long J (2022) A facile surface passivation strategy for Na2SiF6: Mn4+, Li+ phosphors to achieve high moisture resistance and luminescent thermal stability. J Lumin 243:118643. https://doi.org/10.1016/j.jlumin.2021.118643

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (51962005, 52102172, 21805118), Key Special Project of Science and Technology to Help Economy in Jiangxi Province [2020]87, the Key Research and Development Program of Jiangxi Province (20192ACB50021) and the Youth Jinggang Scholars Program in Jiangxi Province [2018]82. It was also supported by the cultivation project of the State key Laboratory of Green Development and High-value Utilization of Ionic Rare Earth Resources in Jiangxi Province (20194AFD44003), the Research Project of Education Department of Jiangxi Province (No. GJJ210846), and the Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology (205200100554).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songbin Liu or Xinyu Ye.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5070 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, L., Zuo, J. et al. Treatment with Na2SO3 alkaline reductant to restore luminescence intensity and improve the moisture resistance of deteriorated Mn4+-doped fluoride phosphors. J Mater Sci 57, 15737–15751 (2022). https://doi.org/10.1007/s10853-022-07638-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-022-07638-2

Navigation