Skip to main content

Advertisement

Log in

Thermal stability and reliability studies of (Sr, Ca) AlSiN3:Eu2+ phosphors for LED application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the thermal stability and reliability properties of (Sr, Ca) AlSiN3:0.05Eu2+ phosphors prepared by solid-state reaction in 1.1 MPa N2 atmosphere were studied. The internal quantum efficiency of (Sr, Ca) AlSiN3:0.05Eu2+ could reach as high as about 92% after Sr ions replacing Ca upon excitation in blue light range (450–470 nm). As the temperature increased from 300 to 500 K, PL intensity of SrxCa1−xAlSiN3:0.05Eu2+ phosphor decreases by 66.24, 27.87 and 16.66% of the initial PL intensity for x = 0.2, 0.5 and 0.8, respectively. The relative PL intensity of SrxCa1−xAlSiN3:0.05Eu2+ phosphor decrease to 98.67% from 96.87% as x increased to 0.8 from 0.2 after storing into an ambient condition of 120 °C for 1 h and −40 °C for 1 h by turns for five times. Reliability test results show that, with x value is from 0.2 to 0.8, the relative PL intensity of SrxCa1−xAlSiN3:0.05Eu2+ phosphor is from 95.87 to 86.51% after the ambient condition of 85 °C/RH 85% for the exposure time of 168 h, from 99.86 to 92.45% after soaking the phosphors into boiled water for 3 h. It can be summarized that the addition of Sr increased the thermal stability largely and deteriorates the reliability of the phosphors slightly. And the reactivity of phosphor with water is the main reason for reducing the reliability of the phosphors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308, 1274–1278 (2005)

    CAS  Google Scholar 

  2. N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hiroski, R.J. Xie, Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode. Appl. Phys. Lett. 90, 051109 (2007)

    Google Scholar 

  3. R. Mueller-Mach, G.O. Mueller, White-light-emitting diodes for illumination. Proc. SPIE 3938, 31–40 (2000)

    Google Scholar 

  4. D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, Illumination with solid state lighting technology. IEEE J. Sel. Top. Quant. Electron. 8, 310 (2002)

    CAS  Google Scholar 

  5. F. Yang, Z.P. Yang, Q.M. Yu, Y.F. Liu, X. Li, F.C. Lu, Sm3+-doped Ba3Bi(PO4)3 orange reddish emitting phosphor. Spectrochim. Acta A 105, 626–631 (2013)

    CAS  Google Scholar 

  6. T.H. Yang, C.Y. Chen, Y.Y. Chang, B. Glorieux, Y.N. Peng, H.X. Chen, T.Y. Chung, T.X. Lee, C.C. Sun, Precise simulation of spectrum for green emitting phosphors pumped by a blue LED die. IEEE Photon. J. 6(4), 1–10 (2014)

    Google Scholar 

  7. G. He, H. Yan, Optimal spectra of the phosphor-coated white LEDs with excellent color rendering property and high luminous efficacy of radiation. Opt. Exp. 19(3), 2519–2529 (2011)

    CAS  Google Scholar 

  8. R.J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, M. Mitomo, 2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors. Appl. Phys. Lett. 90(19), 191101 (2007)

    Google Scholar 

  9. C.Q. Xu, B.A. Watkins, R.E. Sievers, X.P. Jing, P. Trowga, C.S. Gibbons, A. Vecht, Submicron-sized spherical yttrium oxide based phosphors prepared by supercritical CO2-assisted aerosolization and pyrolysis. Appl. Phys. Lett. 71, 1643 (1997)

    CAS  Google Scholar 

  10. L.S. Wang, Y.H. Zhou, Z.W. Quan, J. Lin, Formation mechanisms and morphology dependent luminescence properties of Y2O3:Eu phosphors prepared by spray pyrolysis process. Mater. Lett. 59, 1130–1133 (2005)

    CAS  Google Scholar 

  11. Z.J. Wang, S.Q. Lou, P.L. Li, Improvement of the red emitting phosphor by introducing A+ (A = Li, Na, K) into Sr3La(PO4)3:Eu3+. J. Alloys Compd. 658, 813–817 (2016)

    CAS  Google Scholar 

  12. N.A. Dhas, A. Zaban, A. Gedanken, Surface synthesis of zinc sufide nanoparticles on silica microspheres sonochemical preparation characterization and optical properties. Chem. Mater. 11, 806 (1999)

    CAS  Google Scholar 

  13. Z.X. Qiu, C.Y. Rong, W.L. Zhou, J.L. Zhang, C.Z. Li, L.P. Yu, S.B. Liu, S.X. Lian, A strategy for synthesizing CaZnOS:Eu2+ phosphor and comparison of optical properties with CaS:Eu2+. J. Alloys Compd. 583, 335–339 (2014)

    CAS  Google Scholar 

  14. R.L. Nyengea, H.C. Swart, O.M. Ntwaeaborwa, The influence of substrate temperature and deposition pressure on pulsed laser deposited thin films of CaS:Eu2+ phosphors. Physica B 480, 186–190 (2016)

    Google Scholar 

  15. M. Kubus, K. Levin, S. Kroeker, D. Enseling, T. Jüstel, H.-J. Meyer, Structural and luminescence studies of the new nitridomagnesoaluminate CaMg2AlN3. Dalton Trans. 44, 2819 (2015)

    CAS  Google Scholar 

  16. C.J. Duan, A.C.A. Delsing, H.T. Hintzen, Red emission from Mn2+ on a tetrahedral site in MgSiN2. J. Lumin. 129, 645–649 (2009)

    CAS  Google Scholar 

  17. Z. Zhang, A.C.A. Delsing, P.H.L. Notten, J. Zhao, P. Dorenbos, H.T. Hintzen, Photoluminescence properties of red-emitting Mn2+-activated CaAlSiN3 phosphor for white-LEDs. ECS J. Solid State Sci. Technol. 2(4), R70-R75 (2013)

    Google Scholar 

  18. X. Piao, K.-I. Machida, T. Horikawa, H. Hanzawa, Y. Shimomura, N. Kijima, Preparation of CaAlSiN3:Eu2+ phosphors by the self-propagating high-temperature synthesis and their luminescent properties. Chem. Mater. 19, 4592–4599 (2007)

    CAS  Google Scholar 

  19. H. Watanabe, N. Kijima, Crystal structure and luminescence properties of SrxCa1−xAlSiN3:Eu2+ mixed nitride phosphors. J. Alloys Compd. 475, 434–439 (2009)

    CAS  Google Scholar 

  20. S. Lee, K.-S. Sohn, Effect of inhomogeneous broadening on time-resolved photoluminescence in CaAlSiN3:Eu2+. Opt. Lett. 35, 1004–1006 (2010)

    CAS  Google Scholar 

  21. J. Yang, T. Wang, D. Chen, G. Chen, Q. Liu, An investigation of Eu2+-doped CaAlSiN3 fabricated by an alloy-nitridation method. Mater. Sci. Eng. B 177, 1596–1604 (2012)

    CAS  Google Scholar 

  22. M. Kubus, H.J. Meyer, A low-temperature synthesis route for CaAlSiN3 doped with Eu2+. Z. Anorg. Allg. Chem. 639, 669–671 (2013)

    CAS  Google Scholar 

  23. J.Y. Tang, Y.M. He, L.Y. Hao, X. Xu, S. Agathopoulos, Fine-sized BaSi3Al3O4N5:Eu2+ phosphors prepared by solid-state reaction using BaF2 flux. J. Mater. Res. 28, 2598–2604 (2013)

    CAS  Google Scholar 

  24. X. Song, H. He, R. Fu, D. Wang, X. Zhao, Z. Pan, Photoluminescent properties of SrSi2O2N2: Eu2+ phosphor: concentration related quenching and red shift behavior. J. Phys. D 42, 065409 (2009)

    Google Scholar 

  25. X. Song, R. Fu, S. Agathopoulos, H. He, X. Zhao, X. Yu, Synthesis of BaSi2O2N2:Ce3+, Eu2+ phosphors and determination of their luminescence properties. J. Am. Ceram. Soc. 94, 501–507 (2011)

    CAS  Google Scholar 

  26. S. Florian, O. Oliver, A.H. Henning, H.M. Manfred, P. Rainer, D.M. Bernd, S. Peter, D. Viola, S. Arndt, S. Wolfgang, Crystal structure, physical properties and HRTEM investigation of the new oxonitridosilicate EuSi2O2N2. Chemistry 12, 6984–6990 (2006)

    Google Scholar 

  27. B. Volker, J. Thomas, M. Andries, R. Cees, J.S. Peter, Luminescence properties of SrSi2O2N2 doped with divalent rare earth ions. J. Lumin. 121, 441–449 (2006)

    Google Scholar 

  28. B. Han, L.L. Mu, P. Huang, J.X. Yu, L. Zhao, Cationic substitution induced tuning of photoluminescence in (Sr, Ba)P4O13:Eu2+ solid solution phosphors. Optik 142, 256–259 (2017)

    CAS  Google Scholar 

  29. K.H. Kim, E.H. Kang, B.K. Kang, K.P. Kim, S.H. Hong, Synthesis of SrLu2O4:Eu2+ red phosphors and their photoluminescence properties. J. Lumin. 83, 13–16 (2017)

    Google Scholar 

  30. J.Q. Wan, Q. Liu, G.H. Liu, Z.Z. Zhou, J. Ni, R.J. Xie, A novel Eu2+ activated G-La2Si2O7 phosphor for white LEDs: SiC-reduction synthesis, tunable luminescence and good thermal stability. J. Mater. Chem. C 5, 1614–1623 (2017)

    CAS  Google Scholar 

  31. S.K. Hussain, J.S. Yu, Broad red-emission of Sr3Y2Ge3O12:Eu2+ garnet phosphors under blue excitation for warm WLED applications. RSC Adv. 7, 13281–13288 (2017)

    CAS  Google Scholar 

  32. L. Chen, Z. Zhang, Y.F. Tian, M. Fei, L.R. He, P.J. Zhang, W.H. Zhang, Origin of the red luminescence in Sr3Al2O6:Eu phosphor—from the synergetic effects of Eu2+ and Eu3+. J. Rare Earth 35(2), 127–134 (2017)

    CAS  Google Scholar 

  33. M. Mikami, K. Uheda, N. Kijima, First-principles study of nitridoaluminosilicate CaAlSiN3. Phys. Status Solidi A 203, 2705–2711 (2006)

    CAS  Google Scholar 

  34. H.S. Kim, K.-I. Machida, T. Horikawa, H. Hanzawa, Carbothermal reduction synthesis using CaCN2 as calcium and carbon sources for CaAlSiN3:Eu2+ phosphor and their luminescence properties. Chem. Lett. 43, 533–534 (2014)

    CAS  Google Scholar 

  35. Y.Q. Li, N. Hirosaki, R.J. Xie, T. Takeda, M. Mitomo, Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: structure, photoluminescence, and application in white LEDs. Chem. Mater. 20, 6704–6714 (2008)

    CAS  Google Scholar 

  36. H. Watanabe, H. Yamane, N. Kijima, Crystal structure and luminescence of Sr0.99Eu0.01AlSiN3. J. Solid State Chem. 181, 1848–1852 (2008)

    CAS  Google Scholar 

  37. M. Mikami, H. Watanabe, K. Uheda, N. Kijima, Nitridoaluminosilicate CaAlSiN3 and its derivatives—theory and experiment. Mater. Res. Soc. Symp. Proc. 1040, Q10-09 (2007)

    Google Scholar 

  38. J. Zou, B.B. Yang, S.M. Zhu, J.R. Li, F.C. Wang, Enhancement of thermal stability and reliability of BaxSr2−xSiO4:Eu2+ phosphors by Ba2+ doping. J. Mater. Sci. 27, 13199–13208 (2016)

    CAS  Google Scholar 

  39. J. Zou, B.B. Yang, J.R. Li, S.M. Zhu, X.L. Qian, F.C. Wang, Effect of Sr/Ca substitution on phase structure and photoluminescence properties of micro-SrxCa1−xAlSiN3: Eu2+ phosphor for high CRI white LEDs. Ceram. Int. 42, 14956–14962 (2016)

    CAS  Google Scholar 

  40. C.N. Zhang, T. Uchikoshi, R.J. Xie, L.H. Liu, Y. Cho, Y. Sakka, N. Hirosaki, T. Sekiguchi, Prevention of thermal- and moisture-induced degradation of the photoluminescence properties of the Sr2Si5N8:Eu2+ red phosphor by thermal post-treatment in N2-H2. Phys. Chem. Chem. Phys. 18, 12494 (2016)

    CAS  Google Scholar 

  41. X.J. Zhang, Y.T. Tsai, S.M. Wu, Y.C. Lin, J.F. Lee, H.S. Sheu, B.M. Cheng, R.S. Liu, Facile atmospheric pressure synthesis of high thermal stability and narrow-band red-emitting SrLiAl3N4:Eu2+ phosphor for high color rendering index white light-emitting diodes. ACS Appl. Mater. Interfaces 8, 19612–19617 (2016)

    CAS  Google Scholar 

  42. V. Bachmann, C. Ronda, O. Oeckler, W. Schnick, A. Meijerink, Color point tuning for (Sr,Ca,Ba)Si2O2N2:Eu2+ for white light LEDs. Chem. Mater. 21(2), 316–325 (2009)

    CAS  Google Scholar 

  43. J. Zhu, L. Wang, T.L. Zhou, Y.J. Cho, T. Suehiro, T. Takeda, M. Lu, T. Sekiguchi, N. Hirosakia, R.J. Xie, Moisture-induced degradation and its mechanism of (Sr,Ca)AlSiN3:Eu2+, a red-color-converter for solid state lighting. J. Mater. Chem. C 3, 3181–3188 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (51302171), Science and Technology Commission of Shanghai Municipality (CN) (14500503300), Shanghai Municipal Alliance Program (Lm201547), Shanghai Cooperative Project (ShanghaiCXY-2013-61), and Jiashan County Technology Program (20141316).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Li or Lili Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Hu, L., Yang, B. et al. Thermal stability and reliability studies of (Sr, Ca) AlSiN3:Eu2+ phosphors for LED application. J Mater Sci: Mater Electron 28, 19155–19163 (2017). https://doi.org/10.1007/s10854-017-7872-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7872-8

Navigation