Skip to main content
Log in

Ce3+ and Eu2+ luminescence in calcium and strontium aluminates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Compound CaAl4O7 (CA4), SrAl4O7 (SA4), CaAl12O19 (CA12) and SrAl12O19 (SA12) have been synthesized by using single step combustion method. The phosphors have been characterized by XRD, SEM and PL techniques. Both CA4 and SA4 possess monoclinic crystal structure whereas CA12 and SA12 possess hexagonal structure. Effects of crystal symmetry on the emission spectrum have been studied by doping the samples with Ce3+ and Eu2+ ions. The luminescence properties of Ce3+ and Eu2+ in these hosts is discussed on the basis of their covalent character and the crystal field splitting of the d-orbital of dopant ions. The spectroscopic properties, crystal field splitting, centroid shift, red shift and stokes shift have been studied. Spectroscopic properties of Eu2+ ions have been accurately predicted from those of Ce3+ ions in the same host. Most importantly experimental results were matched excellently with the calculated results. The preferential substitution of Ce3+ and Eu2+ at different Ca2+, Sr2+ crystallographic sites have been discussed. The dependence of emission wavelengths of Ce3+ and Eu2+ on the local symmetry of different crystallographic sites was also studied by using Van Uitert’s empirical relation. Differences in the emission spectrum of these samples have been observed despite their similar crystal structures and space group. Possible reasons have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. C. Feldmann, T. Justel, C.R. Ronda et al., Inorganic luminescent materials: 100 years of research and application. Adv. Funct. Mater. 13, 511–516 (2003)

    Article  Google Scholar 

  2. A.M. Srivastava, H.S. Nalwa, Handbook of Luminescence, Display Materials and Devices (American Scientific Publishers, Stevenson Ranch, 2003)

    Google Scholar 

  3. C.R. Ronda, Luminescence: From Theory to Applications. (Wiley-VCH, Weinheim, 2008)

    Google Scholar 

  4. J. Holsa, Persistent luminescence beats the afterglow: 400 years of persistent minescence. Electrochem. Soc. Interface 18, 42–45 (2009)

    Google Scholar 

  5. M. Born, T. Justel, Elektrische Lichtquellen: Chemie in Lampen. Chem. unserer Zeit 40, 294–305 (2006)

    Article  Google Scholar 

  6. N. Suriyamurthy, S.B. Panigrahi, Effects of non-stoichiometry and substitution on photoluminescence and afterglow luminescence of Sr4Al14O25:Eu2+, Dy3+ phosphor. J. Lumin. 128, 1809–1814 (2008)

    Article  Google Scholar 

  7. V.B. Mikhailik, VUV sensitization of Mn2+ emission by Tb3+ in strontium aluminate phosphor. Mater. Lett. 63, 803–805 (2009)

    Article  Google Scholar 

  8. P. Zhang, L. Li, M. Xu, L. Liu, The new red luminescent Sr3Al2O6:Eu2+ phosphor powders synthesized via sol–gel route by microwave-assisted. J. Alloys Compd. 456, 216–219 (2008)

    Article  Google Scholar 

  9. H. Gao, Y. Wang, Photoluminescence of Eu3+ activated YAlO3 under UV–VUV excitation. Mater. Res. Bull. 42, 921–927 (2007)

    Article  Google Scholar 

  10. Z. Wu, J. Shi, J. Wang, M. Gong, Q. Su, Synthesis and luminescent properties of Sr4Al14O25: Eu2+ blue–green emitting phosphor for white light-emitting diodes (LEDs). J. Mater. Sci.: Mater. Electron. 19, 339–342 (2008)

    Google Scholar 

  11. Z. Ren, C. Tao, H. Yang, Synthesis and luminescent characterization of YAl3 (BO3)4: Tb3+ phosphors. J. Mater. Sci.: Mater. Electron. 19, 319–321 (2008)

    Google Scholar 

  12. P. Zhang, M. Xu, Z. Zheng, L. Liu, L. Li, Synthesis and characterization of europium-doped Sr3Al2O6 phosphors by sol–gel technique. J. Sol-Gel Sci. Technol. 43, 59–64 (2007)

    Article  Google Scholar 

  13. V. Singh, R.P. Chakradhar, J.L. Rao, D.K. Kim, Mn 2+ activated MgSrAl10O17 green-emitting phosphor-A luminescence and EPR study. J. Lumin. 128, 1474–1478 (2008)

    Article  Google Scholar 

  14. A. Bao, C. Tao, H. Yang, Luminescent properties of nanoparticles LaSrAl3O7:RE3+ (RE = Eu, Tb) via the citrate sol–gel method. J. Mater. Sci.: Mater. Electron. 19, 476–481 (2008)

    Google Scholar 

  15. V. Singh, V. Natarajan, J.J. Zhu, Luminescence and EPR investigations of Mn activated calcium aluminate prepared via combustion method. Opt. Mater. 30, 468–472 (2007)

    Article  Google Scholar 

  16. C. Yuesheng, Z. Ping, Z. Zhentai, Eu2+ and Dy3+ co-doped Sr3Al2O6 red long-afterglow phosphors with new flower-like morphology. Physica B 403, 4120–4122 (2008)

    Article  Google Scholar 

  17. X. Zhang, B. Park, N. Choi, J. Kim, G.C. Kim, J.H. Yoo, A novel blue-emitting Sr3Al2O5Cl2:Ce3+, Li+ phosphor for near UV-excited white-light-emitting diodes. Mater. Lett. 63, 700–702 (2009)

    Article  Google Scholar 

  18. Y. Lin, Z. Tang, Z. Zhang, C.W. Nan, Anomalous luminescence in Sr4Al14O25:Eu, Dy phosphors. Appl. Phys. Lett. 81, 996–998 (2002)

    Article  Google Scholar 

  19. F.C. Palilla, A.K. Levine, M.R. Tomkus et al., Fluorescent properties of alkaline earth aluminates of the type MAl2O4 activated by divalent europium. J. Electrochem. Soc. 115, 642–644 (1968)

    Article  Google Scholar 

  20. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

    Book  Google Scholar 

  21. P. Dorenbos, f→ d transition energies of divalent lanthanides in inorganic compounds. J. Phys.: Condens. Matter 15, 575–594 (2003)

    Google Scholar 

  22. P. Dorenbos, Anomalous luminescence of Eu2+ and Yb2+ in inorganic compounds. J. Phys.: Condens. Matter 15, 2645–2665 (2003)

    Google Scholar 

  23. P. Dorenbos, Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds. J. Lumin. 104, 239–260 (2003)

    Article  Google Scholar 

  24. K. Van den Eeckhout, P.F. Smet, D. Poelman, Persistent luminescence in Eu2+-doped compounds: a review. Materials 3, 2536–2566 (2010)

    Article  Google Scholar 

  25. D. Ravichandran, S.T. Johnson, S. Erdei, R. Roy, W.B. White, Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors. Displays 19, 197–203 (1999)

    Article  Google Scholar 

  26. P. Dorenbos, Relating the energy of the [Xe] 5d1 configuration of Ce3+ in inorganic compounds with anion polarizability and cation electronegativity. Phys. Rev. B 23, 235110 (2002)

    Article  Google Scholar 

  27. L.G. Van Uitert, An empirical relation fitting the position in energy of the lower d-band edge for Eu2+ or Ce3+ in various compounds. J. Lumin. 29, 1–9 (1984)

    Article  Google Scholar 

  28. K.A. Gedekar, S.P. Wankhede, S.V Moharil, Synthesis and comparative study of Ce3+ ion in calcium aluminates. J. Sol-Gel Sci. Technol. 82:344–351 (2017)

    Article  Google Scholar 

  29. M. Capron, A. Douy, Strontium dialuminate SrAl4O7: Synthesis and stability. J. Am. Ceram. Soc. 85, 3036–3040 (2002)

    Article  Google Scholar 

  30. R. Jagannathan, R.P. Rao, T.R. Kutty, Eu2+ luminescence in MAl3BO7 aluminoborates (M = Ca, Sr, Ba. Mater. Res. Bull. 27, 459–466 (1992)

    Article  Google Scholar 

  31. M. Karmaoui, M.G. Willinger, L. Mafra, T. Herntrich, N. Pinna, A general nonaqueous route to crystalline alkaline earth aluminate nanostructures. Nanoscale 3, 360–365 (2009)

    Article  Google Scholar 

  32. W. Horkner, H.M. Buschbaum, Zur kristallstruktur von CaAl2O4. J. Inorg. Nucl. Chem. 38, 983–984 (1976)

    Article  Google Scholar 

  33. D.W. Goodwin, A.J. Lindop, The crystal structure of CaO·2Al2O3. Acta Cryst. B 26, 1230–1235 (1970)

    Article  Google Scholar 

  34. A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, H. Kojima, Structure refinement of CaO·6Al2O3. J. Solid State Chem. 75, 197–200 (1988)

    Article  Google Scholar 

  35. A.J. Lindop, C. Matthews, D.W. Goodwin, The refined structure of SrO·6Al2O3. Acta Cryst. B 31, 2940–2941 (1975)

    Article  Google Scholar 

  36. K. Kimura, M. Ohgaki, K. Tanaka, H. Morikawa, F. Marumo, Study of the bipyramidal site in magnetoplumbite-like compounds, SrM12O19 (M = Al, Fe, Ga). J. Solid State Chem. 87, 186–194 (1990)

    Article  Google Scholar 

  37. Z. Nie, K.S. Lim, J. Zhang, X. Wang, Pr3+ 1S 0→Cr3+ energy transfer and ESR investigation in Pr3+ and Cr3+ activated SrAl12O19 quantum cutting phosphor. J. Lumin. 129, 844–849 (2009)

    Article  Google Scholar 

  38. P. Dorenbos, The 5d level positions of the trivalent lanthanides in inorganic compounds. J. Lumin. 91, 155–176 (2000)

    Article  Google Scholar 

  39. P. Dorenbos, The 4f n↔4fn–1 5d transitions of the trivalent lanthanides in halogenides and chalcogenides. J. Lumin. 91, 91–106 (2000)

    Article  Google Scholar 

  40. P. Dorenbos, 5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides. J. Lumin. 99, 283–299 (2002)

    Article  Google Scholar 

  41. P. Dorenbos, Relation between Eu2+ and Ce3+ f↔ d-transition energies in inorganic compounds. J. Phys. Condens. Matter 15, 4797–4807 (2003)

    Article  Google Scholar 

  42. J. Sugar, N. Spector, Spectrum and energy levels of doubly ionized europium (Eu III). J. Opt. Soc. Am. 64, 1484–1497 (1974)

    Article  Google Scholar 

  43. A.M. Pires, M.R. Davolos, Luminescence of europium (III) and manganese (II) in barium and zinc orthosilicate. Chem. Mater. 13, 21–27 (2001)

    Article  Google Scholar 

  44. M. Peng, Z. Pei, G. Hong, Q. Su, The reduction of Eu3+ to Eu2+ in BaMgSiO4∶ Eu prepared in air and the luminescence of BaMgSiO4∶Eu2+ phosphor. J. Mater. Chem. 13, 1202–1205 (2003)

    Article  Google Scholar 

  45. Y. Xu, P. Lu, G. Huang, C. Zeng, Synthesis of SrAl4O7 via citric acid precursor. Mater. Chem. Phys. 95, 62–66 (2006)

    Article  Google Scholar 

  46. Y. Xu, W. Peng, S. Wang, X. Xiang, P. Lu, Synthesis of SrAl2O4 and SrAl12O19 via ethylenediaminetetraacetic acid precursor. Mater. Chem. Phys. 98, 51–54 (2006)

    Article  Google Scholar 

  47. V. Singh, T.G. Rao, J.J. Zhu, Preparation, luminescence and defect studies of Eu2+-activated strontium hexa-aluminate phosphor prepared via combustion method. J. Solid State Chem. 179, 2589–2594 (2006)

    Article  Google Scholar 

  48. J.M. Verstegen, A.L. Stevels, The relation between crystal structure and luminescence in β-alumina and magnetoplumbite phases. J. Lumin. 9, 406–414 (1974)

    Article  Google Scholar 

  49. A.L. Stevels, A.D. Schrama-de Pauw, Eu2+ luminescence in hexagonal aluminates containing large divalent or trivalent cations. J. Electrochem. Soc. 123, 691–697 (1976)

    Article  Google Scholar 

  50. V. Singh, T.G. Rao, J.J. Zhu, Synthesis, photoluminescence, thermoluminescence and electron spin resonance investigations of CaAl12O19: Eu phosphor. J. Lumin. 126, 1–6 (2007)

    Article  Google Scholar 

  51. S.K. Sharma, M.M. Malik, Single step synthesis of Ce3+ doped CaAl2O4 and CaAl4O7 systems. Mater. Lett. 65, 1451–1453 (2011)

    Article  Google Scholar 

  52. D. Jia, J. Zhu, B. Wu, Luminescence and energy transfer in CaAl4O7:Tb3+, Ce3+. J. Lumin. 93, 107–114 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

We are thankful to the Management of K.D.K college of Engineering, Nagpur for providing necessary assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. A. Gedekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gedekar, K.A., Wankhede, S.P., Moharil, S.V. et al. Ce3+ and Eu2+ luminescence in calcium and strontium aluminates. J Mater Sci: Mater Electron 29, 4466–4477 (2018). https://doi.org/10.1007/s10854-017-8394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8394-0

Navigation