Skip to main content

Advertisement

Log in

Energy level location of divalent and trivalent lanthanides in calcium aluminosilicate materials

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ca2Al2SiO7 (CAS) doped with Eu3+, Ce3+, and Tb3+ ions (1 mol%) were synthesized by solid-state reaction at 1280 °C and spectroscopic studies of the prepared samples were performed by photoluminescence and photoluminescence excitation spectra at room temperature. Energies of the lowest f-d transition of Ce3+ ions and charge transfer process of Eu3+ ions obtained from photoluminescence excitation spectra were used to predict the energy levels of all divalent and trivalent lanthanides relative to the valence and conduction bands of CAS host lattice and to construct the host referred binding energy and vacuum referred binding energy schemes. The predicted energies for Tb3+ ions are in good agreement with experimental energies indicating the obtained energy level scheme provides a better understanding of the luminescent processes in Ca2Al2SiO7 material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.H. Lin, Z.L. Tang, Z.T. Zhang, X.X. Wang, J.Y. Zhang, Prepa-ration of a new long afterglow blue-emitting Sr2MgSi2O7- based photoluminescent phosphor. J. Mater. Sci. Lett. 20, 1505–1506 (2001)

    Article  CAS  Google Scholar 

  2. A. Akella, D.A. Keszler, Sr2LiSiO4F: Synthesis, structure, and Eu2+ luminescence. Chem. Mater. 7, 1299–1302 (1995)

    Article  CAS  Google Scholar 

  3. Y. Yonesaki, TakahiroTakei, NobuhiroKumada, NobukazuKinomura, Crystal structure of Eu2+-doped M3MgSi2O8 (M=Ba, Sr, Ca) compounds and their emission properties. J. Solid State Chem. 182, 547–554 (2009)

    Article  CAS  Google Scholar 

  4. M. Kimata, The structural properties of synthetic Sr-gehlenite, Sr2Al2SiO7. Zeitschrift für Kristallographie—Cryst. Mater. 167, 103–116 (1984)

    Article  CAS  Google Scholar 

  5. M.A. Bouhifd, G. Gruener, B.O. Mysen, P. Richet, Premelting and calcium mobility in gehlenite (Ca2Al2SiO7) and pseudowollastonite (CaSiO3). Phys. Chem. Miner. 29, 655–662 (2002)

    Article  CAS  Google Scholar 

  6. G. Tiwari, N. Brahme, R. Sharma, D.P. Bisen, S.K. Sao, S.J. Dhoble, A study on the luminescence properties of gamma-ray-irradiated white light emitting Ca2Al2SiO7:Dy3+ phosphors fabricated using a combustion-assisted method. RSC Adv. 6, 49317–49327 (2016)

    Article  CAS  Google Scholar 

  7. P.L. Boulanger, J.-L. Doualan, S. Girard, J. Margerie, R. Moncorge, B. Viana, Excited-state absorption of Er3+ in the Ca2Al2SiO7 laser crystal. J. Lumin. 86, 15–21 (2000)

    Article  CAS  Google Scholar 

  8. Q. Zhang, J. Wang, M. Zhang, W. Ding, Q. Su, Enhanced photoluminescence of Ca2Al2SiO7:Eu3+ by charge compensation method. Appl. Phys. A 88, 805–809 (2007)

    Article  CAS  Google Scholar 

  9. N.M. Son, D.T. Tien, N.T.Q. Lien, V.X. Quang, N.N. Trac, T.T. Hong, H.V. Tuyen, Luminescence and thermal-quenching properties of red-emitting Ca2Al2SiO7:Sm3+ phosphors. J. Electron. Mater. 49, 3701–3707 (2020)

    Article  Google Scholar 

  10. H. Jiao, G. Zhang, P. Wang, Q. Chen, L. Liu, C. Limao, Y. Wang, Crystal structure refinement, photoluminescence properties and energy transfer of multicolor tunable Ca2Al2SiO7:Tm3+, Dy3+ for NUV white-light-emitting diodes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 229, 117942 (2020)

    Article  CAS  Google Scholar 

  11. H. Jiao, Y. Wang, Ca2Al2SiO7:Ce3+, Tb3+: a white-light phosphor suitable for white-light-emitting diodes. J. Electrochem. Soc. 156, J117 (2009)

    Article  CAS  Google Scholar 

  12. G. Tiwari, N. Brahme, R. Sharma, D.P. Bisen, S.K. Sao, U.K. Kurrey, Enhanced long-persistence of Ca2Al2SiO7:Ce3+ phosphors for mechanoluminescence and thermoluminescence dosimetry. J. Mater. Sci. Mater. Electron. 27, 6399–6407 (2016)

    Article  CAS  Google Scholar 

  13. X.-J. Wang, D. Jia, W.M. Yen, Mn2+ activated green, yellow, and red long persistent phosphors. J. Lumin. 102–103, 34–37 (2003)

    Article  Google Scholar 

  14. H. Wu, Y. Hu, G. Ju, L. Chen, X. Wang, Z. Yang, Photoluminescence and thermoluminescence of Ce3+ and Eu2+ in Ca2Al2SiO7 matrix. J. Lumin. 131, 2441–2445 (2011)

    Article  CAS  Google Scholar 

  15. G. Tiwari, N. Brahme, R. Sharma, D.P. Bisen, S.K. Sao, S. Tigga, Luminescence properties of dysprosium doped di-calcium di-aluminium silicate phosphors. Opt. Mater. 58, 234–242 (2016)

    Article  CAS  Google Scholar 

  16. P. Dorenbos, A.H. Krumpel, E. van der Kolk, P. Boutinaud, M. Bettinelli, E. Cavalli, Lanthanide level location in transition metal complex compounds. Opt. Mater. 32, 1681–1685 (2010)

    Article  CAS  Google Scholar 

  17. A.H. Krumpel, E. van der Kolk, D. Zeelenberg, A.J.J. Bos, K.W. Krämer, P. Dorenbos, Lanthanide 4f-level location in lanthanide doped and cerium-lanthanide codoped NaLaF4 by photo- and thermoluminescence. J. Appl. Phys. 104, 073505 (2008)

    Article  Google Scholar 

  18. P. Dorenbos, Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys. Condens. Matter 15, 8417–8434 (2003)

    Article  CAS  Google Scholar 

  19. P. Dorenbos, Modeling the chemical shift of lanthanide 4f electron binding energies. Phys. Rev. B 85, 165107 (2012)

    Article  Google Scholar 

  20. P. Dorenbos, Ce3+ 5d-centroid shift and vacuum referred 4f-electron binding energies of all lanthanide impurities in 150 different compounds. J. Lumin. 135, 93–104 (2013)

    Article  CAS  Google Scholar 

  21. N. Kodama, T. Takahashi, M. Yamaga, Y. Tanii, J. Qiu, K. Hirao, Long-lasting phosphorescence in Ce3+-doped Ca2Al2SiO7 and CaYAl3O7 crystals. Appl. Phys. Lett. 75, 1715–1717 (1999)

    Article  CAS  Google Scholar 

  22. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994).

    Book  Google Scholar 

  23. H.H. Lin, Y.Y. Wu, H.Y. Chen, The luminescence and energy-transfer of Ce3+, Tb3+ activated Sr3B2O6. Adv. Mater. Res. 399–401, 1169–1174 (2012)

    Google Scholar 

  24. C.-K. Chang, T.-M. Chen, Sr3B2O6:Ce3+, Eu2+: a potential single-phased white-emitting borate phosphor for ultraviolet light-emitting diodes. Appl. Phys. Lett. 91, 081902 (2007)

    Article  Google Scholar 

  25. P. Dorenbos, A review on how lanthanide impurity levels change with chemistry and structure of inorganic compounds. ECS J. Solid State Sci. Technol. 2, R3001–R3011 (2013)

    Article  CAS  Google Scholar 

  26. P. Dorenbos, The Eu3+ charge transfer energy andthe relation with the band gap of compounds. J. Lumin. 111, 89–104 (2005)

    Article  CAS  Google Scholar 

  27. P. Dorenbos, Lanthanide charge transfer energies and related luminescence, charge carrier trapping, and redox phenomena. J. Alloy. Compd. 488, 568–573 (2009)

    Article  CAS  Google Scholar 

  28. P. Dorenbos, Valence stability of lanthanide ions in inorganic compounds. Chem. Mater. 17, 6452–6456 (2005)

    Article  CAS  Google Scholar 

  29. P. Dorenbos, The 4fn-4fn-15d transitions of the trivalent lanthanidesin halogenides and chalcogenides. J. Lumin. 91, 91–106 (2000)

    Article  CAS  Google Scholar 

  30. G. Tiwari, N. Brahme, R. Sharma, D.P. Bisen, S.K. Sao, M. Singh, Fracto-mechanoluminescence and thermoluminescence properties of UV and gamma-irradiated Ca2Al2SiO7:Ce3+ phosphor. Luminescence 31, 793–801 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.03-2018.323.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Van Tuyen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trac, N.N., Van Tuyen, H., Van Khoa Bao, L. et al. Energy level location of divalent and trivalent lanthanides in calcium aluminosilicate materials. J Mater Sci: Mater Electron 32, 4239–4247 (2021). https://doi.org/10.1007/s10854-020-05168-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-05168-8

Navigation