Skip to main content
Log in

Dielectric response mechanism and suppressing high-frequency dielectric loss in Y2O3 grafted CaCu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ca1−3x/2Y x Cu3Ti4O12 (0 ≤ x ≤ 0.67) ceramics were fabricated by a conventional solid-state reaction method. Lattice parameter of the system increases linearly with increasing x. The high-frequency dielectric loss of Ca1−3x/2Y x Cu3Ti4O12 is suppressed significantly while the dielectric constant decreases slightly. The dielectric, impedance and modulus spectra reveals that the giant dielectric response associates with the Maxwell–Wagner effect. The decrease of dielectric constant is just related to the capacitance of grain boundaries. The dielectric relaxation behavior of the system is independent of Y substitution while the correlation between conductivity and frequency becomes stronger in Y substituted CaCu3Ti4O12. It suggests that space charge and long-range hopping of carriers play important roles on the low-frequency dielectric properties. The decrease of grain-boundary activation energy with Y substitution indicates that the concentration of oxygen vacancies increases in grain boundaries. The mechanisms of depressing low-frequency dielectric constant and high-frequency dielectric loss was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Yang, P.F. Liang, L.H. Yang, P.J. Shi, X.L. Chao, Z.P. Yang, J. Mater. Sci. 26, 1959–1968 (2015)

    Google Scholar 

  2. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid. State Chem. 151, 323–325 (2000)

    Article  Google Scholar 

  3. A.P. Ramirez, M.A. Subramanian, M. Gardel, G. Blumberg, D. Li, T. Vogt, S.M. Shapiro, Solid State Commun. 115, 217–220 (2000)

    Article  Google Scholar 

  4. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Phys. Rev. B 67, 552–555 (2003)

    Google Scholar 

  5. T.B. Adams, D.C. Sinclair, A.R. West, Cheminform 33, 17 (2002)

    Google Scholar 

  6. G. Zang, J. Zhang, P. Zheng, J. Wang, C. Wang, J. Phys. D 38, 1824 (2005)

    Article  Google Scholar 

  7. P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, J. Appl. Phys. 112, 114115–114117 (2012)

    Article  Google Scholar 

  8. M.H. Cohen, J.B. Neaton, L. He, D. Vanderbilt, J. Appl. Phys. 94, 3299–3306 (2003)

    Article  Google Scholar 

  9. P. Lunkenheimer, R. Fichtl, S.G. Ebbinghaus, A. Loidl, Phys. Rev. B 70, 3352–3359 (2004)

    Article  Google Scholar 

  10. L. Zhang, Appl. Phys. Lett. 87, 3404 (2005)

    Google Scholar 

  11. J.M. Deng, X.J. Sun, S.S. Liu, L.J. Liu, T.X. Yan, L. Fang, B. Elouadi, J. Adv. Dielectr. 6, 1650009 (2016)

    Article  Google Scholar 

  12. P. Thongbai, J. Jumpatam, T. Yamwong, S. Maensiri, J. Eur. Ceram. Soc. 32, 2423–2430 (2012)

    Article  Google Scholar 

  13. T.B. Adams, D.C. Sinclair, A.R. West, J. Am. Ceram. Soc. 89, 3129–3135 (2006)

    Article  Google Scholar 

  14. J.J. Liu, C.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, Phys. Rev. B 70, 144106 (2004)

    Article  Google Scholar 

  15. T.T. Fang, H.K. Shiau, J. Am. Ceram. Soc. 87, 2072–2079 (2004)

    Article  Google Scholar 

  16. T.T. Fang, C.P. Liu, Chem. Mater. 17, 5167–5171 (2005)

    Article  Google Scholar 

  17. P.R. Bueno, M.A. Ramırez, J.A. Varela, E. Longo, Appl. Phys. Lett. 89, 191117 (2006)

    Article  Google Scholar 

  18. M.A. Ramirez, P.R. Bueno, J.A. Varela, E. Longo, Appl. Phys. Lett. 89, 1321 (2006)

    Google Scholar 

  19. S. Mukherjee, A. Srivastava, R. Guota, A. Garg, J. Appl. Phys. 115, 2463–2485 (2014)

    Google Scholar 

  20. J. Shi, W.C. Tian, X. Liu, H.Q. Fan, J. Am. Ceram. Soc. 100, 1080–1090 (2017)

    Article  Google Scholar 

  21. X. Liu, H.L. Du, X.C. Liu, J. Shi, H.Q. Fan, Ceram. Int. 42, 17876–17879 (2016)

    Article  Google Scholar 

  22. X.J. Sun, J.M. Deng, L.J. Liu, S.S. Liu, D.P. Shi, L. Fang, B. Elouadi, Mater. Res. Bull. 73, 437–445 (2016)

    Article  Google Scholar 

  23. A. Molak, E. Ksepko, I. Gruszka, A. Ratuszna, M. Paluch, Z. Ujma, Solid State Ion. 176, 1439 (2005)

    Article  Google Scholar 

  24. G.Z. Li, Z. Chen, X.J. Sun, L.J. Liu, L. Fang, B. Elouadi, Mater. Res. Bull. 65, 260–265 (2015)

    Article  Google Scholar 

  25. A. Rajabtabar-Darvishi, L.I. Wei-Li, O. Sheikhnejad-Bishe et al., Trans. Nonferr. Metal. Soc. 21, 400–404 (2011)

    Article  Google Scholar 

  26. P.F. Liang, Y.Y. Li, Y.Q. Zhao, L.L. Wei, Z.P. Yang, J. Appl. Phys. 113, 323 (2013)

    Article  Google Scholar 

  27. P.F. Liang, Z.P. Yang, X.L. Chao, Z.H. Liu, J. Am. Ceram. Soc. 95, 2218–2225 (2012)

    Article  Google Scholar 

  28. J.W. Li, P.F. Liang, J. Yi, Z.P. Yang, J. Am. Ceram. Soc. 98, 795–803 (2015)

    Article  Google Scholar 

  29. Z. Liu, Z. Yang, X. Chao, Structure, J. Mater. Sci. 27, 1–11 (2016)

    Google Scholar 

  30. L.H. Yang, X.L. Chao, P.F. Liang, L.L. Wei, Z.P. Yang, Mater. Res. Bull. 64, 216–222 (2015)

    Article  Google Scholar 

  31. C. Ang, Z. Yu, Z. Jing, P. Lunkenheimer, A. Loidl, Phys. Rev. B 61, 3922–3926 (2000)

    Article  Google Scholar 

  32. K. Kumari, K. Prasad, K.L. Yadav, J. Mater. Sci. 42, 6252–6259 (2007)

    Article  Google Scholar 

  33. B.S. Kang, S.K. Choi, C.H. Park, J. Appl. Phys. 94, 1904–1911 (2003)

    Article  Google Scholar 

  34. Z. Abdelkafi, N. Abdelmoula, H. Khemakhem, O. Bidault, J. Appl. Phys. 100, 323–858 (2006)

    Article  Google Scholar 

  35. A. Dutta, T.P. Sinha, S. Shannigrahi, Phys. Rev. B 76, 155113 (2007)

    Article  Google Scholar 

  36. L. Liu, Y. Huang, C. Su et al., Appl. Phys. A 104(4), 1047–1051 (2011)

    Article  Google Scholar 

  37. H.G. Zhang, J. Zhou, Y.L. Wang, L.T. Li, Z.X. Yue, Z.L. Gui, Mater. Lett. 55, 351–355 (2002)

    Article  Google Scholar 

  38. M.M. Rashad, H.M. El-Sayed, M. Rasly, A.A. Sattar, I.A. Ibrahim, J. Mater. Sci. 24, 282–289 (2013)

    Google Scholar 

  39. J. Bao, J. Zhou, Z.X. Yue, L.T. Li, Z.L. Gui, J. Magn. Magn. Mater. 250, 131–137 (2002)

    Article  Google Scholar 

  40. R. Gerhardt, J. Phys. Chem. Solids 55, 1491–1506 (1994)

    Article  Google Scholar 

  41. P.F. Liang, X.L. Chao, Z.P. Yang, J. Appl. Phys. 116, 673–2169 (2014)

    Article  Google Scholar 

  42. W. Li, R.W. Schwartz, Appl. Phys. Lett. 89, 217 (2006)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 11264010, 11564010, 51402196), the Natural Science Foundation of Guangxi (GA139008, 2016GXNSFDA380027), and the China Postdoctoral Science Foundation (Grants 2014M552229 and 2015T80915).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Biaolin Peng or Laijun Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Ren, S., Deng, J. et al. Dielectric response mechanism and suppressing high-frequency dielectric loss in Y2O3 grafted CaCu3Ti4O12 ceramics. J Mater Sci: Mater Electron 28, 17378–17387 (2017). https://doi.org/10.1007/s10854-017-7671-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7671-2

Navigation