Skip to main content
Log in

Effects of Y doping ions on microstructure, dielectric response, and electrical properties of Ca1−3x/2Y x Cu3Ti4O12 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of Y3+ doping ions on ceramic microstructure, dielectric response, and electrical properties of Ca1−3x/2Y x Cu3Ti4O12 (x = 0, 0.05, 0.10, and 0.15) ceramics prepared by a modified sol–gel method were investigated. A grain size of Ca1−3x/2Y x Cu3Ti4O12 was reduced by Y3+ ions due to a solute drag effect. Substitution of CaCu3Ti4O12 ceramics with suitable Y3+ concentration of 5 at. % can improve dielectric properties with high-dielectric permittivity of ε′ ~ 1.37 × 104 and low tanδ ~ 0.05 at 1 kHz. The results revealed that the relationship of the mean grain size and ε′ cannot be formulated. Using impedance spectroscopy analysis, the grain boundary resistance (R gb) of Ca1−3x/2Y x Cu3Ti4O12 ceramics was found to be strongly enhanced by Y3+ doping ions with x = 0.05. With further increasing x from 0.05 to 0.15, R gb decreased. While the grain resistance tended to increase with increasing Y3+ concentration (x = 0–0.15). Variation of a low-frequency tanδ value in all Ca1−3x/2Y x Cu3Ti4O12 ceramics due to the influence of Y3+ substitution was well consistent with their changes in R gb values. Non-Ohmic properties of Ca1−3x/2Y x Cu3Ti4O12 ceramics were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Subramanian, D. Li, N. Duan, B.A. Reisner, A.W. Sleight, J. Solid State Chem. 151, 323 (2000)

    Article  Google Scholar 

  2. C.C. Homes, T. Vogt, S.M. Shapiro, S. Wakimoto, A.P. Ramirez, Science 293, 673 (2001)

    Article  Google Scholar 

  3. M.A. Subramanian, A.W. Sleight, Solid State Sci. 4, 347 (2002)

    Article  Google Scholar 

  4. S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nat. Mater. 3, 774 (2004)

    Article  Google Scholar 

  5. L. Feng, X. Tang, Y. Yan, X. Chen, Z. Jiao, G. Cao, Phys. Status Solidi (a) 203, R22 (2006)

    Article  Google Scholar 

  6. B.S. Prakash, K.B.R. Varma, J. Mater. Sci. Mater. Electron. 17, 899 (2006)

    Article  Google Scholar 

  7. P. Leret, J.F. Fernandez, J. de Frutos, D. Fernández-Hevia, J. Eur. Ceram. Soc. 27, 3901 (2007)

    Article  Google Scholar 

  8. S. Jin, H. Xia, Y. Zhang, Ceram. Int. 35, 309 (2009)

    Article  Google Scholar 

  9. T. Li, Y. Xue, Z. Chen, F. Chang, Mater. Sci. Eng. B 158, 58 (2009)

    Article  Google Scholar 

  10. C. Mu, H. Zhang, Y. Liu, Y. Song, P. Liu, J. Rare Earths 28, 43 (2010)

    Article  Google Scholar 

  11. Y. Wang, L. Ni, X.M. Chen, J. Mater. Sci. Mater. Electron. 22, 345 (2011)

    Article  Google Scholar 

  12. R. Kashyap, O.P. Thakur, R.P. Tandon, Ceram. Int. 38, 3029 (2012)

    Article  Google Scholar 

  13. J. Li, B. Fu, H. Lu, C. Huang, J.W. Sheng, Ceram. Int. 39, S149 (2013)

    Article  Google Scholar 

  14. J. Boonlakhorn, P. Thongbai, B. Putasaeng, T. Yamwong, S. Maensiri, J. Alloys Compd. 612, 103 (2014)

    Article  Google Scholar 

  15. A. Lopera, M.A. Ramirez, C. García, C. Paucar, J. Marín, Inorg. Chem. Commun. 40, 5 (2014)

    Article  Google Scholar 

  16. W. Hao, J. Zhang, Y. Tan, W. Su, J. Am. Ceram. Soc. 92, 2937 (2009)

    Article  Google Scholar 

  17. Y.Q. Tan, J.L. Zhang, W.T. Hao, G. Chen, W.B. Su, C.L. Wang, Mater. Chem. Phys. 124, 1100 (2010)

    Article  Google Scholar 

  18. P. Liang, Z. Yang, X. Chao, Z. Liu, J. Am. Ceram. Soc. 95, 2218 (2012)

    Article  Google Scholar 

  19. W. Somphan, P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 48, 4087 (2013)

    Article  Google Scholar 

  20. H. Ren, P. Liang, Z. Yang, Mater. Res. Bull. 45, 1608 (2010)

    Article  Google Scholar 

  21. Z. Yang, H. Ren, X. Chao, P. Liang, Mater. Res. Bull. 47, 1273 (2012)

    Article  Google Scholar 

  22. W. Tuichai, P. Thongbai, V. Amornkitbamrung, T. Yamwong, S. Maensiri, Microelectron. Eng. 126, 118 (2014)

    Article  Google Scholar 

  23. Y. Qiu, Z.Z. Ma, S.X. Huo, H.N. Duan, Z.M. Tian, S.L. Yuan, L. Chen, J. Mater. Sci. Mater. Electron. 23, 1587 (2012)

    Article  Google Scholar 

  24. P. Liang, Y. Li, F. Li, X. Chao, Z. Yang, Mater. Res. Bull. 52, 42 (2014)

    Article  Google Scholar 

  25. Z. Liu, X. Chao, Z. Yang, J. Mater. Sci. Mater. Electron. 25, 2096 (2014)

    Article  Google Scholar 

  26. P. Thongbai, T. Yamwong, S. Maensiri, Mater. Res. Bull. 47, 432 (2012)

    Article  Google Scholar 

  27. P. Liang, Y. Li, Y. Zhao, L. Wei, Z. Yang, J. Appl. Phys. 113, 224102 (2013)

    Article  Google Scholar 

  28. W. Somphan, N. Sangwong, T. Yamwong, P. Thongbai, J. Mater. Sci. Mater. Electron. 23, 1229 (2012)

    Article  Google Scholar 

  29. P. Liang, X. Chao, F. Wang, Z. Liu, Z. Yang, J. Am. Ceram. Soc. 96, 3883 (2013)

    Article  Google Scholar 

  30. W. Kobayashi, I. Terasaki, Appl. Phys. Lett. 87, 032902 (2005)

    Article  Google Scholar 

  31. S.F. Shao, J.L. Zhang, P. Zheng, C.L. Wang, J.C. Li, M.L. Zhao, Appl. Phys. Lett. 91, 042905 (2007)

    Article  Google Scholar 

  32. P. Liang, X. Chao, Z. Yang, J. Appl. Phys. 116, 044101 (2014)

    Article  Google Scholar 

  33. J.W. Cahn, Acta Metall. 10, 789 (1962)

    Article  Google Scholar 

  34. M.N. Rahaman, Ceramic Processing and Sintering, 2nd edn. (M. Dekker, New York, 2003)

    Google Scholar 

  35. J. Wu, C.-W. Nan, Y. Lin, Y. Deng, Phys. Rev. Lett. 89, 217601 (2002)

    Article  Google Scholar 

  36. M. Li, Z. Shen, M. Nygren, A. Feteira, D.C. Sinclair, A.R. West, J. Appl. Phys. 106, 104106 (2009)

    Article  Google Scholar 

  37. W. Li, R.W. Schwartz, A. Chen, J. Zhu, Appl. Phys. Lett. 90, 112901 (2007)

    Article  Google Scholar 

  38. L. Ni, X.M. Chen, Appl. Phys. Lett. 91, 122905 (2007)

    Article  Google Scholar 

  39. K. Meeporn, T. Yamwong, S. Pinitsoontorn, V. Amornkitbamrung, P. Thongbai, Ceram. Int. 40, 15897 (2014)

    Article  Google Scholar 

  40. R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. 32, 3313 (2012)

    Article  Google Scholar 

  41. P. Thongbai, S. Pinitsoontorn, V. Amornkitbamrung, T. Yamwong, S. Maensiri, P. Chindaprasirt, Int. J. Appl. Ceram. Technol. 10, E77 (2013)

    Article  Google Scholar 

  42. M. Li, D.C. Sinclair, A.R. West, J. Appl. Phys. 109, 084106 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Thailand Research Fund (TRF) under the TRF Senior Research Scholar [Grant No. RTA5680008]. J. Boonlakhorn would like to thank the Faculty of Science, Khon Kaen University for his Master of Science Degree scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasit Thongbai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boonlakhorn, J., Kidkhunthod, P., Putasaeng, B. et al. Effects of Y doping ions on microstructure, dielectric response, and electrical properties of Ca1−3x/2Y x Cu3Ti4O12 ceramics. J Mater Sci: Mater Electron 26, 2329–2337 (2015). https://doi.org/10.1007/s10854-015-2688-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-015-2688-x

Keywords

Navigation