Skip to main content
Log in

A review of noble metal (Pd, Ag, Pt, Au)–zinc oxide nanocomposites: synthesis, structures and applications

  • Review
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

As a promising candidate for future catalytic applications, the noble metal–ZnO nanocomposites are gaining increasing interest due its high catalytic property, and super stability. In this review, the noble metal–ZnO nanocomposites with various composites and structures for catalytic applications will be discussed. We introduce the multi-catalytic properties and design concept of the noble metal–ZnO nanocomposites, and then particular highlight key finding of synthesis method for various noble metal–ZnO nanocomposites. The catalytic activity of noble metal–ZnO nanostructures has been found to rely on not only the species of noble metal but also the architecture of the catalyst material. Moreover, the typical works of modification on noble metal–ZnO nanostructures have been introduced. Critically, the challenges for future research development and our future perspectives are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T.T. Zhuang, Y. Liu, Y. Li et al., Small 13, 1602629 (2017)

    Article  Google Scholar 

  2. J. Gan, X. Lu, Y. Tong, Nanoscale 6, 7142 (2014)

    Article  Google Scholar 

  3. G.-L. Wang, K.-L. Liu, Y.-M. Dong, X.-M. Wu, Z.-J. Li, C. Zhang, Biosens. Bioelectron. 62, 66 (2014)

    Article  Google Scholar 

  4. X. Lang, J. Zhao, X. Chen, Chem. Soc. Rev. 45, 3026 (2016)

    Article  Google Scholar 

  5. M.D. Regulacio, M.-Y. Han, Acc. Chem. Res. 49, 511 (2016)

    Article  Google Scholar 

  6. C.-C. Wang, X.-D. Du, J. Li, X.-X. Guo, P. Wang, J. Zhang, Appl. Catal. B 193, 198 (2016)

    Article  Google Scholar 

  7. T. Yanagitani, N. Mishima, M. Matsukawa, Y. Watanabe, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54, 701 (2007)

    Article  Google Scholar 

  8. H Gu, Y Yang, J Tian, G Shi, Acs Appl. Mater. Interfaces 5, 6762 (2013)

    Article  Google Scholar 

  9. Ü Özgür, Y.I. Alivov, C. Liu et al., J. Appl. Phys. 98, 11 (2005)

    Article  Google Scholar 

  10. X. Sun, S. Lam, T. Sham, F. Heigl, A. Jürgensen, N. Wong, J. Phys. Chem. B 109, 3120 (2005)

    Article  Google Scholar 

  11. A. Kołodziejczak-Radzimska, T. Jesionowski, Materials 7, 2833 (2014)

    Article  Google Scholar 

  12. C. Yu, K. Yang, Y. Xie et al., Nanoscale 5, 2142 (2013)

    Article  Google Scholar 

  13. H. Liu, Y. Feng, D. Chen, C.Y. Li, P.L. Cui, J. Yang, J. Mater. Chem. A 3, 3182 (2015)

    Article  Google Scholar 

  14. M. Pirhashemi, A. Habibi-Yangjeh, J. Colloid Interface Sci. 491, 216 (2017)

    Article  Google Scholar 

  15. B. Golzad-Nonakaran, A. Habibi-Yangjeh, Mater. Chem. Phys. 184, 210 (2016)

    Article  Google Scholar 

  16. B. Golzad-Nonakaran, A. Habibi-Yangjeh, Adv. Powder Technol. 27, 1427 (2016)

    Article  Google Scholar 

  17. M. Pirhashemi, A. Habibi-Yangjeh, J. Mater. Sci. 27, 4098 (2016)

    Google Scholar 

  18. M. Pirhashemi, A. Habibi-Yangjeh, J. Alloys Compd. 601, 1 (2014)

    Article  Google Scholar 

  19. S. Shaker-Agjekandy, A. Habibi-Yangjeh, Mater. Sci. Semicond. Process 34, 74 (2015)

    Article  Google Scholar 

  20. S. Naghizadeh-Alamdari, A. Habibi-Yangjeh, M. Pirhashemi, Solid State Sci. 40, 111 (2015)

    Article  Google Scholar 

  21. J. Chiou, S. Ray, H. Tsai et al., J. Phys. Chem. C 115, 2650 (2011)

    Article  Google Scholar 

  22. P.D. Burton, D. Lavenson, M. Johnson et al., Top. Catal. 49, 227 (2008)

    Article  Google Scholar 

  23. D. Zhang, X. Liu, X. Wang, J. Alloys Compd. 509, 4972 (2011)

    Article  Google Scholar 

  24. J. Liqiang, W. Baiqi, X. Baifu et al., J. Solid State Chem. 177, 4221 (2004)

    Article  Google Scholar 

  25. T.-J. Whang, M.-T. Hsieh, H.-H. Chen, Appl. Surf. Sci. 258, 2796 (2012)

    Article  Google Scholar 

  26. B. Baruwati, D.K. Kumar, S.V. Manorama, Sens. Actuators B 119, 676 (2006)

    Article  Google Scholar 

  27. S.M. Majhi, P. Rai, Y.-T. Yu, Acs Appl. Mater. Interfaces 7, 9462 (2015)

    Article  Google Scholar 

  28. C.S. Rout, A. Raju, A. Govindaraj, C. Rao, Solid State Commun. 138, 136 (2006)

    Article  Google Scholar 

  29. N. Morales-Flores, U. Pal, E.S. Mora, Appl. Catal. A 394, 269 (2011)

    Article  Google Scholar 

  30. C. Liewhiran, S. Phanichphant, Curr. Appl. Phys. 8, 336 (2008)

    Article  Google Scholar 

  31. P. Pawinrat, O. Mekasuwandumrong, J. Panpranot, Catal. Commun. 10, 1380 (2009)

    Article  Google Scholar 

  32. Y. Chen, D. Zeng, K. Zhang, A. Lu, L. Wang, D.-L. Peng, Nanoscale 6, 874 (2014)

    Article  Google Scholar 

  33. Y.K. Hsu, S.Y. Fu, M.H. Chen, Y.C. Chen, Y.G. Lin, Electrochim. Acta 120, 1 (2014)

    Article  Google Scholar 

  34. D.-T. Phan, G.-S. Chung, Sens. Actuators B 161, 341 (2012)

    Article  Google Scholar 

  35. S. Wei, Y. Yu, M. Zhou, Mater. Lett. 64, 2284 (2010)

    Article  Google Scholar 

  36. J. Yuan, E.S.G. Choo, X. Tang, Y. Sheng, J. Ding, J. Xue, Nanotechnology 21, 185606 (2010)

    Article  Google Scholar 

  37. J. Liqiang, W. Dejun, W. Baiqi, et al, J. Mol. Catal. A 244, 193 (2006)

    Article  Google Scholar 

  38. Y. Zhang, Q. Xiang, J. Xu, P. Xu, Q. Pan, F. Li, J. Mater. Chem. 19, 4701 (2009)

    Article  Google Scholar 

  39. A. Bera, D. Basak, Nanotechnology 22, 265501 (2011)

    Article  Google Scholar 

  40. C.-M. Chang, M.-H. Hon, C. Leu, Rsc Adv. 2, 2469 (2012)

    Article  Google Scholar 

  41. Y. Xiao, L. Lu, A. Zhang et al., Acs Appl. Mater. Interfaces 4, 3797 (2012)

    Article  Google Scholar 

  42. P. Bera, J.M. Vohs, J. Phys. Chem. C 111, 7049 (2007)

    Article  Google Scholar 

  43. L.-L. Xing, C.-H. Ma, Z.-H. Chen, Y.-J. Chen, X.-Y. Xue, Nanotechnology 22, 215501 (2011)

    Article  Google Scholar 

  44. C. Yu, K. Yang, W. Zhou, Q. Fan, L. Wei, C.Y. Jimmy, J. Phys. Chem. Solids 74, 1714 (2013)

    Article  Google Scholar 

  45. D. Lin, H. Wu, W. Zhang, H. Li, W. Pan, Appl. Phys. Lett. 94, 172103 (2009)

    Article  Google Scholar 

  46. H. Li, E.-T. Liu, F.Y. Chan, Z. Lu, R. Chen, Mater. Lett. 65, 3440 (2011)

    Article  Google Scholar 

  47. X.-Y. Ye, Y.-M. Zhou, Y.-Q. Sun, J. Chen, Z.-Q. Wang, J. Nanopart. Res. 11, 1159 (2009)

    Article  Google Scholar 

  48. W. Lu, S. Gao, J. Wang, J. Phys. Chem. C 112, 16792 (2008)

    Article  Google Scholar 

  49. X.-Y. Xue, Z.-H. Chen, L.-L. Xing, C.-H. Ma, Y.-J. Chen, T.-H. Wang, J. Phys. Chem. C 114, 18607 (2010)

    Article  Google Scholar 

  50. L. He, L. Li, T. Wang et al., Dalton Trans. 43, 16981 (2014)

    Article  Google Scholar 

  51. N. Gogurla, A.K. Sinha, S. Santra, S. Manna, S.K. Ray, Sci. Rep. 4, 6483 (2014)

    Article  Google Scholar 

  52. P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, J. Am. Chem. Soc. 133, 5660 (2011)

    Article  Google Scholar 

  53. X-j Wang, W. Wang, Y.-L. Liu, Sens. Actuators B 168, 39 (2012)

    Article  Google Scholar 

  54. L. Shen, N. Bao, K. Yanagisawa et al., J. Solid State Chem. 180, 213 (2007)

    Article  Google Scholar 

  55. L. Shen, N. Bao, K. Yanagisawa, A. Gupta, K. Domen, C.A. Grimes, Cryst. Growth Des. 7, 2742 (2007)

    Article  Google Scholar 

  56. S.-Y. Peng, Z.-N. Xu, Q.-S. Chen et al., ACS Catal. 5, 4410 (2015)

    Article  Google Scholar 

  57. Z. Li, L. Ye, F. Lei, Y. Wang, S. Xu, S. Lin, Electrochim. Acta 188, 450 (2016)

    Article  Google Scholar 

  58. S. Choopun, A. Tubtimtae, T. Santhaveesuk, S. Nilphai, E. Wongrat, N. Hongsith, Appl. Surf. Sci. 256, 998 (2009)

    Article  Google Scholar 

  59. N. Bala, S. Saha, M. Chakraborty et al., Rsc Adv 5, 4993 (2015)

    Article  Google Scholar 

  60. A. Mclaren, T. Valdes-Solis, G. Li, S.C. Tsang, J. Am. Chem. Soc. 131, 12540 (2009)

    Article  Google Scholar 

  61. B.I. Kharisov, Recent Pat. Nanotechnol. 2, 190 (2008)

    Article  Google Scholar 

  62. S. Tan, A. Ebrahimi, T. Langrish, Mater. Des. 117, 178 (2017)

    Article  Google Scholar 

  63. H. Huang, N. Huang, Z. Wang et al., J. Colloid Interface Sci. 502, 77 (2017)

    Article  Google Scholar 

  64. A. Blaková, L. Csölleová, V. Brezová, J. Photochem. Photobiol. A 113, 251 (1998)

    Article  Google Scholar 

  65. W. Göpel, G. Rocker, R. Feierabend, Phys. Rev. B 28, 3427 (1983)

    Article  Google Scholar 

  66. X. Liu, H. Cao, J. Yin, Nano Res. 4, 470 (2011)

    Article  Google Scholar 

  67. Z. Bao, Y. Yuan, C. Leng, L. Li, K. Zhao, Z. Sun, Acs Appl. Mater. Interfaces 9, 16417 (2017)

    Article  Google Scholar 

  68. M.R.D. Khaki, M.S. Shafeeyan, A.A.A. Raman, W.M.A.W. Daud, J. Environ. Manage. 198, 78 (2017)

    Article  Google Scholar 

  69. A.B. Patil, K.R. Patil, S.K. Pardeshi, J. Solid State Chem. 184, 3273 (2011)

    Article  Google Scholar 

  70. G. Xiong, U. Pal, J.G. Serrano, J. Appl. Phys. 101, 024317 (2007)

    Article  Google Scholar 

  71. W. Kwok, A. Djurišić, Y. Leung, W. Chan, D. Phillips, Appl. Phys. Lett. 87, 223111 (2005)

    Article  Google Scholar 

  72. A. Tsukazaki, A. Ohtomo, T. Onuma et al., Nat. Mater. 4, 42 (2005)

    Article  Google Scholar 

  73. S. Chichibu, T. Onuma, M. Kubota et al., J. Appl. Phys. 99, 093505 (2006)

    Article  Google Scholar 

  74. J.R. Lakowicz, Anal. Biochem. 337, 171 (2005)

    Article  Google Scholar 

  75. Q. Ren, S. Filippov, S. Chen et al., Nanotechnology 23, 425201 (2012)

    Article  Google Scholar 

  76. E. Guidelli, O. Baffa, D. Clarke, Sci. Rep. 5, 14004 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by National Natural Science Foundations of China (51202197 and 51372205) and the National “973” Program (2011CB610406). It is also supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20116102120014), and the Natural Science Basic Research Plan in Shaanxi Province of China (2014K06-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Feng, J. & Jie, W. A review of noble metal (Pd, Ag, Pt, Au)–zinc oxide nanocomposites: synthesis, structures and applications. J Mater Sci: Mater Electron 28, 16585–16597 (2017). https://doi.org/10.1007/s10854-017-7612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7612-0

Navigation