Skip to main content
Log in

Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, thermal annealing processes was depended in order to prepare (Δ) phase LiNbO3 and the properties of nanostructure films was characterized. The sol–gel method was used to grow and deposit high purity Lithium-Niobate Nano and Micro-structure on a quartz substrate, at three different annealing temperatures. The structural, morphological, and optical properties of grown films have been investigated using X-ray diffraction, scanning electron microscopy, atomic force microscopy, optical study through Raman spectroscopy, UV–Vis and Photoluminescence. The measurements showed that the structure was crystalline in nature and the grains are regularly distributed within the film as a result of increasing the annealing temperature. This observation is typically used in optical waveguides and other optoelectronics applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Fakhri, E.T. Salim, M.H. Wahid, U. Hashim, Z.T. Salim, R.A. Ismail, Synthesis and characterization of nanostructured LiNbO3 films with variation of stirring duration. J. Mater. Sci. Mater. Electron. 28, 11813–11822 (2017)

    Article  Google Scholar 

  2. E. Marenna, C. Aruta, E. Fanelli, M. Barra, P. Pernice, A. Aronne, Sol–gel synthesis of nanocomposite materials based on lithium niobatenanocrystals dispersed in a silica glass matrix. J. Solid State Chem. 182, 1229–1234 (2009)

    Article  Google Scholar 

  3. M. Liu, D. Xue, C. Luo, Wet chemical synthesis of pure LiNbO3 powders from simple niobium oxide Nb2O5. J. Alloys Compd. 426, 118–122 (2006)

    Article  Google Scholar 

  4. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, Optical investigations of photonics Lithium Niobate. Sol. Energy 120, 381–388 (2015)

    Article  Google Scholar 

  5. E. Marina, C. Aruta, E. Fanelli, M. Barra, P. Pernice, A. Aronne, Sol–gel synthesis of nanocomposite materials based on lithium niobate nanocrystals dispersed in a silica glass matrix. J. Solid State Chem 182, 1229–1234 (2009)

    Article  Google Scholar 

  6. Z.T. Salim, U. Hashim, M.K.M. Arshad, M.A. Fakhri, Simulation, fabrication and validation of surface acoustic wave layered sensor based on ZnO/IDT/128 YX LiNbO3. Int. J. Appl. Eng. Res. 11, 8785–8790 (2016)

    Google Scholar 

  7. M.A. Fakhri, M.S. Alwazni, Y. Al-Douri, E.T. Salim, U. Hashim, C.C. Woei, Preparation of nanophotonics LINbO3 thin films and studying their morphological and structural properties by sol-gel method for waveguide applications, World Acad. Sci. Eng. Technol. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 10, 519–524 (2016)

    Google Scholar 

  8. M.A. Fakhri, Y. Al-Douri, E.T. Salim, U. Hashim, Y. Yusof, E.B. Choo, Z.T. Salim, Y.N. Jurn, Structural properties and surface morphology analysia of nanophotonic LiNbO3, ARPN J Eng Appl. Sci..11, 4974–4978 (2016)

    Google Scholar 

  9. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, D. Prakash, K.D. Verma, Optical investigation of nanophotonic lithium niobate based optical waveguide, Appl. Phys. B 121, 107–116 (2015)

    Article  Google Scholar 

  10. S. Mamoun, A.E. Merad, L. Guilbert, Energy band gap and optical properties of lithium niobate from ab initio calculations. Comput. Mater. Sci. 79, 125–131 (2013)

    Article  Google Scholar 

  11. C. Thierfelder, S. Sanna, A. Schindlmayr, W.G. Schmidt, Do we know the band gap of lithium niobate? Phys. Status Solid (C) 7, 362–365 (2010)

    Article  Google Scholar 

  12. A. Tumuluri, K.L. Naidu, K.C. James Raju, Band gap determination using Tauc’s plot for LiNbO3 thin films. Int. J. ChemTech. Res. 6, 3353–3356 (2014)

    Google Scholar 

  13. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, XRD analysis and morphological studies of spin coated LiNbO3 nano photonic crystal prepared for optical waveguide application, Adv. Mater. Res. 1133, 457–461 (2016)

    Article  Google Scholar 

  14. M.A. Fakhri, U. Hashim, E.T. Salim, Z.T. Salim, Preparation and charactrization of photonic LiNbO3 generated from mixing of new raw materials using spry pyrolysis method. J. Mater. Sci. 27(12), 13105–13112 (2016)

    Google Scholar 

  15. Y. Guo, Ch. Diving, A. Myc, F.L. Terry, J.R. Baker, Th.B. Norris, J.Y. Ye, Sensitive molecular binding assay using a photonic crystal structure in total internal reflection, Opt. Express 16, 11741–11749 (2008)

    Article  Google Scholar 

  16. C.A. Diaz-Moreno, R. Farias-Mancilla, J.T. Elizalde-Galindo, J. González-Hernández, A. Hurtado-Macias, D. Bahena, M. José-Yacamán, M. Ramos, Structural aspects LiNbO3 nanoparticles and their ferromagnetic properties. Materials 7, 7217–7225 (2014)

    Article  Google Scholar 

  17. H. Hu, R. Ricken, W. Sohler, Lithium niobate photonic wires. Opt. Express 17, 24261–24268 (2009)

    Article  Google Scholar 

  18. L. Cao, A. Aboketa, Z. Wang, S. Preble, Hybrid amorphous silicon (a-Si:H)–LiNbO3 electro-optic modulator. Opt. Commun. 330, 40–44 (2014)

    Article  Google Scholar 

  19. J. Son, S.S. Orlov, B. Phillips, L. Hesselink, Pulsed laser deposition of single phase LiNbO3 thin film waveguides. J. Electroceram. 17, 591–595 (2006)

    Article  Google Scholar 

  20. P. Galinetto, M. Marinone, D. Grando, G. Samoggia, F. Caccavale, A. Morbiato, Micro-Raman analysis on LiNbO3 substrates and surfaces: compositional homogeneity and effects of etching and polishing processes on structural properties. Opt. Lasers Eng. 45, 380–384 (2007)

    Article  Google Scholar 

  21. A.A. Mohamed, M.A. Metawe’e, A.N.Z. Rashed, A.I.M. Bendary, Ultra high speed semiconductor electrooptic modulator devices for Gigahertz operation in optical communication systems. Int. Electr. Eng. J. 2, 560–570 (2011)

    Google Scholar 

  22. T. Zhang, B. Wang, Ye-Q. Zhao, Sh-Q. Fang, De-C. Ma, Yu-H. Xu, Optical homogeneity and second harmonic generation in Li-rich Mg-doped LiNbO3 crystals. Mater. Chem. Phys. 88, 97–101 (2004)

    Article  Google Scholar 

  23. J. Guo, J. Zhu, W. Zhou, X. Huang, A plasmonic electro-optical variable optical attenuator based on side-coupled metal–dielectric–metal structure. Opt. Commun. 294, 405–408 (2013)

    Article  Google Scholar 

  24. W.-K. Kim, S.-W. Kwon, W.-J. Jeong, G.-S. Son, K.-H. Lee, W.-Y. Choi, W.-S. Yang, H.-M. Lee, H.-Y. Lee, Integrated optical modulator for signal up conversion over radio-on-fiber link. Opt. Express 17, 2638–2645 (2009)

    Article  Google Scholar 

  25. Y. Tan, F. Chen, M. Stepić, V. Shandarov, D. Kip, Reconfigurable optical channel waveguides in lithium niobate crystals produced by a combination of low-dose O3 + ion implantation and selective white light illumination. Opt. Express 16, 10465–10470 (2008)

    Article  Google Scholar 

  26. H.K. Lam, J.Y. Dai, H.L.W Chan, Orientation controllable deposition of LiNbO3 films on sapphire and diamond substrates for surface acoustic wave device application. J. Cryst. Growth 268, 144–148 (2004)

    Article  Google Scholar 

  27. R. Grange, J.-W. Choi, Ch-L. Hsieh, Y. Pu, A. Magrez, R. Smajda, L. Forró, D. Psaltis, Lithium niobate nanowires synthesis, optical properties, and manipulation. Appl. Phys. Lett. 95, 143105-143105-3 (2009)

    Article  Google Scholar 

  28. R.N. Zhukov, A.S. Bykov, D.A. Kiselev, M.D. Malinkovich, Y.N. Parkhomenko, Piezoelectric properties and surface potential behavior in LiNbO3thin films grown by the radio frequency magnetron sputtering. J. Alloys Compd. 586, S336–S338 (2014)

    Article  Google Scholar 

  29. Y. Lu, P. Dekker, Growth and characterization of lithium niobate planar waveguides by liquid phase epitaxy. J. Cryst. Growth 311, 1441–1445 (2009)

    Article  Google Scholar 

  30. Y. Akiyama, K. Shitanaka, H. Murakami, Y.-S. Shin, M. Yoshida, N. Imaishi, Epitaxial growth of lithium niobate film using metalorganic chemical vapor deposition. Thin Solid Films 515, 4975–4979 (2007)

    Article  Google Scholar 

  31. A.Z. Simoes, M.A. Zaghetea, B.D. Stojanovic, C.S. Riccardi, A. Ries, A.H. Gonzalez et al., LiNbO3 thin films prepared through polymeric precursor method. Mater. Lett. 57, 2333–2339 (2003)

    Article  Google Scholar 

  32. M. Nyman, T.M. Anderson, P.P. Provencio, Comparison of Aqueous and non-aqueous soft-chemical syntheses of lithium niobate and lithium tantalate powders, Cryst. Growth Des. 9, 1036–1040 (2009)

    Article  Google Scholar 

  33. A.R. Kamalin, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835–1841 (2014)

    Article  Google Scholar 

  34. E.T. Salim, M.A. Fakhri, H. Hasan, Metal oxide nanoparticles suspension for optoelectronic device fabrication. Int. J. Nanoelectron. Mater. 6, 121–128 (2013)

    Google Scholar 

  35. E.T. Salim, Optoelectronic properties of Fe2O3/Si heterojunction prepared by rapid thermal oxidation method. Indian J. Phys. 87, 349–353 (2013)

    Article  Google Scholar 

  36. M.A. Muhsien, E.T. Salem, I.R. Agool, H.H. Hamdan, Gas sensing of Au/n-SnO2/p-PSi/c-Si heterojunction devices prepared by rapid thermal oxidation. Appl. Nanosci. 4(6), 719–732 (2014)

    Article  Google Scholar 

  37. X. Wang, Z. Ye, G. Wu, L. Cao, B. Zhao, Growth of textured LiNbO3 thin film on Si (111) substrate by pulsed laser deposition. Mater. Lett. 59, 2994–2997 (2005)

    Article  Google Scholar 

  38. E.T. Salim, S.M. Al Wazny, M.A. Fakhri, Glancing angle reactive pulsed laser deposition (GRPLD) for Bi2O3/Si heterostructure. Mod. Phys. Lett. B 27, 1350122-7–1350122-1 (2013)

    Article  Google Scholar 

  39. A. Kadhim, E.T. Salim, S.M. Fayadh, A.A. Al-Amiery, A. Amir H. Kadhum, A.B. Mohamad, Effect of multipath laser shock processing on microhardness, surface roughness, and wear resistance of 2024-T3 Al alloy, The Scientific World Journal (2014), Article ID 490951, doi:10.1155/2014/490951

  40. E.T. Salem, I.R. Agool, M.A. Hassan, Construction of SnO2/SiO2/Si hetrojunction and its lineup using I–V and C–V measurements. Int. J. Mod. Phys. B 25, 3863 (2011). doi:10.1142/S0217979211102022

    Article  Google Scholar 

  41. M.A. Fakhri, Y. Al-Douri, E.T. Salim, U. Hashim, Y. Yusof, Effects of chemical stirring time on the physical properties for LiNbO3 photonic film using of optical waveguide applications. Procedia Chem. 19, 531–538 (2016)

    Article  Google Scholar 

  42. I.R. Agool, E.T. Salem, M.A. Hassan, Optical and electrical properties of SnO2 thin film prepared using RTO method. Int. J. Mod. Phys. B 25, 1081 (2011). doi:10.1142/S0217979211058614

    Article  Google Scholar 

  43. Z.T. Salim, U. Hashim, M.K.M. Arshad, M.A. Fakhri, E.T. Salim, Zinc oxide flakes-corolla lobes like nano combined structure for SAW applications. Mater. Res. Bull. 86, 215–219 (2017)

    Article  Google Scholar 

  44. M.A. Fakhri, Annealing effects on opto-electronic properties of Ag2O Films growth using thermal evaporation techniques. Int. J. Nanoelectron. Mater. 9, 93–102 (2016)

    Google Scholar 

  45. E.T. Salim, Surface morphology and X-ray diffraction analysis for silicon nanocrystal based heterostructures. Surf. Rev. Lett. 20, 1350046 (2013). doi:10.1142/S0218625X13500467

    Article  Google Scholar 

  46. Z.T Salim, U. Hashim, MKM Arshad, FEM modeling and simulation of a layered SAW device based on ZnO/128° YX LiNbO3, 2016 IEEE International Conference on Semiconductor Electronics (ICSE) pp. 3–8. doi:10.1109/SMELEC.2016.7573577

  47. Z.T. Salim, U. Hashim, M.K.Md.. Arshad, M.A. Fakhri, E.T. Salim, Frequency-based detection of female Aedes mosquito using surface acoustic wave technology: early prevention of dengue fever. Microelectron. Eng. 179, (5), 83–90 (2017)

    Article  Google Scholar 

  48. E.T. Salim, R.A. Ismail, M.A. Fakhry, Y. Yusof, Reactive PLD of ZnO thin film for optoelectronic application. Int. J. Nanoelectron. Mater. 9, 111–122 (2016)

    Google Scholar 

  49. A.Z. Simões, A.H.M González, A.A. Cavalheiro, M.A. Zaghete, B.D. Stojanovic, J.A. Varela, Effect of magnesium on structure and properties of LiNbO3 prepared from polymeric precursors. Ceram. Int. 28, 265–270 (2002)

    Article  Google Scholar 

  50. I.-K. Jeong, Correlated thermal motion in ferroelectric LiNbO3 studied using neutron total scattering and a rietveld analysis. J. Kor. Phy. Soc. 59, 2756–2759 (2011)

    Article  Google Scholar 

  51. V. Kumar, S. Juneja, S.K. Sharma, V. Singh, T.P. Sharma, Optimization of sintering temperature in CdZnS films using reflection spectroscopy. J. Coat. Technol. Res. 7, 399–402 (2010)

    Article  Google Scholar 

  52. J. Husna, M.M. Aliyu, N.R. Hamzah, M.S. Hossain, M.R. Karim, N. Amin, Influence of annealing temperature on the properties of ZnO thin films grown by sputtering. Energy Procedia 25, 55–61 (2012)

    Article  Google Scholar 

  53. H. Zhao, Y.Q. Xu, H.Q. Ni, S.Y. Zhang, D.H. Wu, Q. Han, R.H. Wu, Z.C. Niu, Characteristic of rapid thermal annealing on GaIn(N)(Sb)As/GaAs quantum well grown by molecular-beam epitaxy. J. Appl. Phys. 99, 0349031 (2006)

    Google Scholar 

  54. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, Annealing temperature effects on morphological and optical studies of nano and micro photonics lithium niobate using for optical waveguide applications. Aust. J. Basic Appl. Sci. 9, 128–133 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Makram A. Fakhri or Evan T. Salim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, M.A., Salim, E.T., Hashim, U. et al. Annealing temperature effect on structural and morphological properties of nano photonic LiNbO3 . J Mater Sci: Mater Electron 28, 16728–16735 (2017). https://doi.org/10.1007/s10854-017-7586-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7586-y

Navigation