Skip to main content
Log in

Kinetics of the thermal degradation mechanisms in urea-formaldehyde cellulose composites filled with zinc particles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper reports a study on the structural characterization, thermal stability, and thermal degradation kinetics of urea-formaldehyde cellulose (UFC) composites filled with zinc particles. Structural characterization of UFC/Zn composites carried out by SEM, XRD and FTIR analyses reveals that the composites are fairly homogenous, and the interactions between UFC and zinc in the composites are physical in nature. Afterwards, measurements of inherent thermal stabilities, probing reaction complexity, and thermal degradation kinetics of UFC/Zn composites have been carried out. The integral procedure decompositions temperature elucidates significantly higher thermal stabilities of UFC/Zn composites. Isoconversional kinetic analysis suggests multi-step reaction pathways of UFC/Zn composites in terms of the substantial variations in their activation energies with the reaction advancement. Advanced reaction model determination methodology with the help of an innovative kinetic function F(α, T) reveals that the thermal degradation of UFC goes to completion by following complicated multi-step nucleation/growth mechanisms. A detailed account of the mechanistic information regarding to the thermal degradation processes taking place in UFC/Zn composites is given and discussed in the present study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Mihai, N. Sofian, D. Rusu, Polym. Test. 20, 409–417 (2001)

    Article  Google Scholar 

  2. M. Rusu, M. Daranga, N.M. Sofian, D.L. Rusu, Mater. Plast. 35, 15–21 (1998)

    Google Scholar 

  3. B. Pradhan, S.K. Majee, S.K. Batabyal, A.J. Pal, J. Nanosci. Nanotechnol. 7, 4534–4539 (2007)

    Article  Google Scholar 

  4. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, 2nd edn. (Butterworth-Heinemann, Oxford, 1997)

    Google Scholar 

  5. G. Pinto, A. Maaroufi, J. Appl. Polym. Sci. 96, 2011–2015 (2005)

    Article  Google Scholar 

  6. M.A. Arshad, A. Maaroufi, R. Benavente, J.M. Perena, G. Pinto, Polym. Compos. 34, 2049–2060 (2013)

    Article  Google Scholar 

  7. B.P. Rand, H. Richter, Organic Solar Cells: Fundamentals, Devices, and Upscaling. (Taylor & Francis, Florida, 2014)

    Book  Google Scholar 

  8. M.A. Arshad, A. Maaroufi, Soc. Plast. Eng. (2015). doi:10.2417/spepro.006183

    Google Scholar 

  9. M.A. Arshad, A. Maaroufi, R. Benavente, G. Pinto, Polym. Compos. 37, 5–16 (2016)

    Article  Google Scholar 

  10. S. Vyazovkin, Isoconversional Kinetics of Thermally Stimulated Processes. (Springer, New York, 2015)

    Book  Google Scholar 

  11. M.A. Arshad, A. Maaroufi, J. Non-Crystalline Solids 413, 53–58 (2015)

    Article  Google Scholar 

  12. S. Vyazovkin, A.K. Burnham, J.M. Craido, L.A. Pérez-Maqueda, C. Popescu, N. Sbirrazzuoli, Thermochim. Acta 520, 1–19 (2011)

    Article  Google Scholar 

  13. M.E. Brown, P.K. Gallagher, Handbook of Thermal Analysis and Calorimetry: Recent Advances, Techniques and Applications. (Elsevier B.V., Amsterdam, 2008)

    Google Scholar 

  14. S. Vyazovkin, K. Chrissafis, M.L.D. Lorenzo, N. Koga, M. Pijolat, B. Roduit, N. Sbirrazzuoli, J.J. Sunol, Thermochim. Acta 590, 1–23 (2014)

    Article  Google Scholar 

  15. M.E. Brown, D. Dollimore, A.K. Galwey, Comprehensive Chemical Kinetics. (Elsevier, Amsterdam, 1980)

    Google Scholar 

  16. M. Fanfoni, M. Tomellini, Il Nuovo Cimento 20, 1171–1182 (1998)

    Article  Google Scholar 

  17. F. Booth, Trans. Faraday Soc. 44, 796–801 (1948)

    Article  Google Scholar 

  18. A. Khawam, D.R. Flanagan, J. Phys. Chem. B 110, 17315–17328 (2006)

    Article  Google Scholar 

  19. A.M. Ginstling, B.I. Brounshtein, J. Appl. Chem. USSR 23, 1327–1338 (1950)

    Google Scholar 

  20. W.Z. Jander, Anorg. Allg. Chem. 163, 1–30 (1927)

    Article  Google Scholar 

  21. J. Sestak, G. Berggren, Thermochim. Acta 3, 1–12 (1971)

    Article  Google Scholar 

  22. P.W.M. Jacobs, F.C. Tompkins, Chemistry of the Solid State. (Academic Press, New York, 1955)

    Google Scholar 

  23. M.A. Arshad, A. Maaroufi, Thermochim. Acta 585, 25–35 (2014)

    Article  Google Scholar 

  24. J.H. Flynn, Thermochim. Acta 300, 83–92 (1997)

    Article  Google Scholar 

  25. J.H. Flynn, L.A. Wall, J. Res. Nat. Bur. Stand. A Phys. Chem. 70(6), 487–523 (1966)

    Article  Google Scholar 

  26. T. Akahira, T. Sunose, Sci. Technol. 16, 22–31 (1971)

    Google Scholar 

  27. M.J. Starink, Thermochim. Acta 404, 163–176 (2003)

    Article  Google Scholar 

  28. J.M. Criado, L.A. Pérez-Maqueda, P.E. Sánchez-Jiménez, J. Therm. Anal. Calorim. 82, 671–675 (2005)

    Article  Google Scholar 

  29. S. Park, J.O. Baker, M.E. Himmel, P.E. Parilla, D.K. Johnson, Biotechnol. Biofuels 3, 1–10 (2010)

    Article  Google Scholar 

  30. E. Roumeli, E. Papadopoulou, E. Pavlidou, G. Vourlias, D. Bikiaris, K.M. Paraskevopoulos, K. Chrissafis, Thermochim. Acta 527, 33–39 (2012)

    Article  Google Scholar 

  31. I.M. Arafa, M.M. Fares, A.S. Braham, Eur. Polym. J. 40, 1477–1487 (2004)

    Article  Google Scholar 

  32. M.A. Arshad, A. Maaroufi, G. Pinto, S. El-Barkany, A. Elidrissi, Bull. Mater. Sci. 39, 1609–1618 (2016)

    Article  Google Scholar 

  33. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, Solid State Sci. 13, 251–256 (2011)

    Article  Google Scholar 

  34. Joint Committee on Powder Diffraction Standards, Powder Diffraction File (JCPDS-ICDD) No. 036 1451 and #00-004-0831.

  35. S.S. Jada, J. Appl. Polym. Sci. 35, 1573–1592 (1988)

    Article  Google Scholar 

  36. H. Yang, R. Yan, H. Chen, D.H. Lee, C. Zheng, Fuel 86, 1781–1788 (2007)

    Article  Google Scholar 

  37. F. Xu, J.X. Sun, R. Sun, P. Fowler, M.S. Baird, Ind. Crop Prod. 23, 180–193 (2006)

    Article  Google Scholar 

  38. B.C. Smith, Infrared Spectral Interpretation: A Systematic Approach. (CRC Press, Boca Raton, 1998)

    Google Scholar 

  39. M.O. Edoga, Leonardo Elect. J. Pract. Tehnol. 9, 63–80 (2006)

    Google Scholar 

  40. S. Samarzija-Jovanovic, V. Jovanovic, S. Konstantinovic, G. Markovic, M. Marinovic-Cincovic, J. Therm. Anal. Calorim. 104, 1159–1166 (2011)

    Article  Google Scholar 

  41. K. Siimer, T. Kaljuvee, P. Christjanson, I. Lasn, J. Therm. Anal. Calorim. 84, 71–77 (2006)

    Article  Google Scholar 

  42. C. Camino, C. Operti, L. Trossarelli, Polym. Degrad. Stab. 5, 161–172 (1983)

    Article  Google Scholar 

  43. S. Spoljaric, K.K. Wong, M. Pannirselvam, G.J. Griffin, R.A. Shanks, S. Setunge, Chemeca 41, 805–811 (2013)

    Google Scholar 

  44. V. Malmeev, S. Bourbigot, J. Yvon, J. Anal. Appl. Pyrolysis 80, 151–156 (2007)

    Article  Google Scholar 

  45. V. Malmeev, S. Bourbigot, M.L. Bras, J. Yvon, Chem. Eng. Sci. 61, 1276–1292 (2006)

    Article  Google Scholar 

  46. M.A. Arshad, A. Maaroufi, R. Benavente, G. Pinto, J. App. Polym. Sci. 134, 1–13 (2017)

    Google Scholar 

  47. M.A. Arshad, A. Maaroufi, R. Benavente, G. Pinto, J. Mater. Environ. Sci. 5, 1342–1354 (2014)

    Google Scholar 

  48. M.D. Argyle, C.H. Bartholomew, Catalysts 5, 145–269 (2015)

    Article  Google Scholar 

  49. P.-Y. Kuo, L.A. Barros, Y.-C. Sheen, M. Sain, J.S.Y. Tjong, N. Yan, J. Anal. Appl. Pyrolysis 117, 199–213 (2016)

    Article  Google Scholar 

  50. W.S. Wang, H.S. Chen, Y.W. Wu, T.Y. Tsai, Y.W. Chen-Yang, Polymer 49, 4826–4836 (2008)

    Article  Google Scholar 

  51. C.D. Doyle, Anal. Chem. 33, 77–79 (1961)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AbdelKrim Maaroufi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arshad, M.A., Maaroufi, A., Benavente, R. et al. Kinetics of the thermal degradation mechanisms in urea-formaldehyde cellulose composites filled with zinc particles. J Mater Sci: Mater Electron 28, 11832–11845 (2017). https://doi.org/10.1007/s10854-017-6991-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6991-6

Keywords

Navigation