Skip to main content
Log in

Morphology, thermal stability and thermal degradation kinetics of cellulose-modified urea–formaldehyde resin

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This article reports a study on the structural characterization and evaluation of thermal degradation kinetics of urea–formaldehyde resin modified with cellulose, known as UFC resin. Structural characterization of UFC undertaken by scanning electron microscopy, Fourier transform infrared and X-ray diffraction analyses reveals that the resin is fairly homogenous, and it constitutes of partly crystalline structure including urea–formaldehyde/cellulose interface morphology different from UFC precursors. Measurement of inherent thermal stability, probing reaction complexity and the thermal degradation kinetic analysis of UFC have been carried out by thermogravimetric/differential thermal analyses (TGA/DTA) under non-isothermal conditions. The integral procedure decomposition temperature elucidates significant thermal stability of UFC. TGA/DTA analyses suggest highly complicated reaction profile for thermal degradation of UFC, comprising various parallel/consecutive reactions. Different differential and integral isoconversional methods have been employed to determine the thermal degradation activation energy of UFC. Substantial variation in activation energy with the advancement of reaction verifies multi-step reaction pathway of UFC. A plausible interpretation of the obtained kinetic parameters of UFC thermal degradation with regard to their physical meanings is given and discussed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Meyer B 1979 Urea-formaldehyde resins (Reading, MA: Addison-Wesley)

    Google Scholar 

  2. Lokensgard E 2008 Industrial plastics: theory and applications (New York: Delmar) 5th edn p 491

  3. Levendis D, Pizzi A and Ferg A 1992 Holzforschung 46 263

    Article  Google Scholar 

  4. Hubbe M A, Rojas O J, Lucia L A and Sain M 2008 BioResources 3 929

    Google Scholar 

  5. Singha A S and Thakur V K 2010 Polym. Compos. 31 459

    Google Scholar 

  6. Zhang H, Zhang J, Song S, Wu G and Pu J 2011 BioResources 6 4430

    Google Scholar 

  7. Basta A H, Saied H E, Winandy J E and Sabo R 2011 J. Polym. Environ. 19 405

    Article  Google Scholar 

  8. Pinto G and Maaroufi A K 2005 J. Appl. Polym. Sci. 96 2011

    Article  Google Scholar 

  9. Pinto G and Maaroufi A K 2005 Polym. Compos. 26 401

    Article  Google Scholar 

  10. Pinto G, Maaroufi A K, Benavente R and Pereña J M 2011 Polym. Compos. 32 193

    Article  Google Scholar 

  11. Pinto G and Maaroufi A K 2012 Polym. Compos. 33 2188

    Article  Google Scholar 

  12. Vyazovkin S 2015 Isoconversional kinetics of thermally stimulated processes (Heidelberg: Springer)

    Book  Google Scholar 

  13. Vyazovkin S 2000 Int. Rev. Phys. Chem. 19 45

    Article  Google Scholar 

  14. Vyazovkin S 2000 New J. Chem. 24 913

    Article  Google Scholar 

  15. Vyazovkin S, Burnham A K, Craido J M, Pérez-Maqueda L A, Popescu C and Sbirrazzuoli N 2011 Thermochim. Acta 520 1

    Article  Google Scholar 

  16. Wu W, Cai J and Liu R 2013 Ind. Eng. Chem. Res. 52 14376

    Article  Google Scholar 

  17. Baroni E G, Tannous K, Rueda-Ordoez Y J and Tinoco-Navarro L K 2016 J. Therm. Anal. Calorim. 123 909

    Article  Google Scholar 

  18. Brachi P, Miccio F, Miccio M and Ruoppolo G 2015 Fuel Proc. Tech. 130 147

    Article  Google Scholar 

  19. Ren S and Zhang J 2013 Thermochim. Acta 561 36

    Article  Google Scholar 

  20. Venkatesh M, Ravi P and Tewari S P 2013 J. Phys. Chem. A 117 10162

    Article  Google Scholar 

  21. Sharma J K, Srivastava P, Singh G, Akhtar M S and Ameen S 2015 Mater. Sci. Eng. B 193 181

    Article  Google Scholar 

  22. Brown M E and Gallagher P K 2008 Handbook of thermal analysis and calorimetry; recent advances, techniques and applications (Amsterdam: Elsevier) 5th edn p 503

  23. Friedman H L 1964 J. Polym. Sci. 6 (C) 183

    Google Scholar 

  24. Arshad M A and Maaroufi A K 2014 Thermochim. Acta 585 25

    Article  Google Scholar 

  25. Burnham A K and Braun R L 1999 Energ. Fuel 13 1

    Article  Google Scholar 

  26. Criado J M, Pérez-Maqueda L A and Sánchez-Jiménez P E 2005 J. Therm. Anal. Calorim. 82 671

    Article  Google Scholar 

  27. Dresser M J, Madey T E and Yates T J 1974 Surf. Sci. 42 533

    Article  Google Scholar 

  28. Ibach H, Erley W and Wagner H 1980 Surf. Sci. 92 29

    Article  Google Scholar 

  29. Soler J M and Garcia N 1983 Surf. Sci. 124 563

    Article  Google Scholar 

  30. German R M 1996 Sintering theory and practice (New York: John Wiley)

    Google Scholar 

  31. Fan J and Zeng J 2013 J. Appl. Math. Comput. 219 9438

    Article  Google Scholar 

  32. Flynn J H 1997 Thermochim. Acta 300 83

    Article  Google Scholar 

  33. Flynn J H and Wall L A 1966 J. Res. Nat. Bur. Standards-A: Phys. Chem. 70 (A) 487

    Article  Google Scholar 

  34. Akahira T and Sunose T 1971 Sci. Technol. 16 22

    Google Scholar 

  35. Starink M J 2003 Thermochim. Acta 404 163

    Article  Google Scholar 

  36. Vyazovkin S 2001 J. Comput. Chem. 22 178

    Article  Google Scholar 

  37. Jada S S 1988 J. Appl. Polym. Sci. 35 1573

    Article  Google Scholar 

  38. Yang H, Yan R, Chen H, Lee D H and Zheng C 2007 Fuel 86 1781

    Article  Google Scholar 

  39. Xu F, Sun J X, Sun R, Fowler P and Baird M S 2006 Ind. Crop. Prod. 23 180

    Article  Google Scholar 

  40. Smith B C 1998 Infrared spectral interpretation: a systematic approach (Boca Raton: CRC Press)

    Google Scholar 

  41. Edoga M O 2006 Leonardo Elect. J. Pract. Tehnol. 9 63

    Google Scholar 

  42. Samarzija-Jovanovic S, Jovanovic V, Konstantinovic S, Markovic G and Marinovic-Cincovic M 2011 J. Therm. Anal. Calorim. 104 1159

    Article  Google Scholar 

  43. Park S, Baker J O, Himmel M E, Parilla P E and Johnson D K 2010 Biotechnol. Biofuels 3 1

    Article  Google Scholar 

  44. Roumeli E, Papadopoulou E, Pavlidou E, Vourlias G, Bikiaris D, Paraskevopoulos K M and Chrissafis K 2012 Thermochim. Acta 527 33

    Article  Google Scholar 

  45. Arafa I M, Fares M M and Braham A S 2004 Eur. Polym. J. 40 1477

    Article  Google Scholar 

  46. Siimer K, Kaljuvee T, Christjanson P and Lasn I 2006, J. Therm. Anal. Calorim. 84 71

    Article  Google Scholar 

  47. Camino C, Operti C and Trossarelli L 1983 Polym. Degrad. Stab. 5 161

    Article  Google Scholar 

  48. Zorba T, Papadopoulou E, Hatjiissaak A, Paraskevopoulos K M and Chrissafis K 2008 J. Therm. Anal. Calorim. 92 29

    Article  Google Scholar 

  49. Spoljaric S, Wong K K, Pannirselvam M, Griffin G J, Shanks R A and Setunge S 2013 Chemeca 41 805

    Google Scholar 

  50. Malmeev V, Bourbigot S and Yvon J 2007 J. Anal. Appl. Pyrol. 80 151

    Article  Google Scholar 

  51. Malmeev V, Bourbigot S, Bras M L and Yvon J 2006 J. Chem. Eng. Sci. 61 1276

    Article  Google Scholar 

  52. Arshad M A, Maaroufi A, Benavente R and Pinto G 2014 , J. Mater. Environ. Sci. 5 1342

    Google Scholar 

  53. Arshad M A, Maaroufi A, Benavente R, Pereña J M and Pinto G 2013 Polym. Compos. 34 2049

    Article  Google Scholar 

  54. Doyle C D 1961 Anal. Chem. 33 77

    Article  Google Scholar 

  55. Arshad M A, Maaroufi A, Benavente R and Pinto G 2015 Polym. Compos. 36 9

    Google Scholar 

  56. Chiang C L, Chang R C and Chiu Y C 2007 Thermochim. Acta 453 97

    Article  Google Scholar 

Download references

Acknowledgement

We acknowledge the financial support from the Ministry of Economy and Competitiveness (MICINN), Spain, through the National Program for Fostering Excellence in Scientific and Technical Research (Project MAT2013-47972-C2-1-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A MAAROUFI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ARSHAD, M.A., MAAROUFI, A., PINTO, G. et al. Morphology, thermal stability and thermal degradation kinetics of cellulose-modified urea–formaldehyde resin. Bull Mater Sci 39, 1609–1618 (2016). https://doi.org/10.1007/s12034-016-1304-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12034-016-1304-x

Keywords

Navigation