Skip to main content
Log in

Synthesis and characterization of nanostructured LiNbO3 films with variation of stirring duration

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This paper focused on the effect of sol–gel stirring duration on the properties nanostructured lithium niobate (LiNbO 3 ) films grown by sol–gel method. Nanostructured LiNbO3 film was deposited on quartz substrate using sol–gel deposition technique. The precursor solution has been prepared with maximum stirrer times of 48 h. The structural, morphological and optical properties of grown films have been investigated using X-ray diffraction, scanning electron microscopy, atomic force microscopy, optical study through Raman spectroscopy, UV–Visible and photoluminescence (PL). The measurements showed that the structure was crystalline in nature and the grains was distributed regularly within the film. This observation is typically used in optical waveguides and other optoelectronics applications. Raman spectroscopy proved a multi dominated Raman-active phonons with the main diffraction peaks corresponding to E(LO1), E(LO7), E(LO8), E(TO3) and E(TO4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, Annealing temperature effects on Morphological and Optical Studies of Nanoand micro photonics lithium niobate using for optical waveguide applications. Aust. J. Basic Appl. Sci. 9(12), 128–133 (2015)

    Google Scholar 

  2. E. Marenna, C. Aruta, E. Fanelli, M. Barra, P. Pernice, A. Aronne, Sol–gel synthesis of nanocomposite materials based on lithium niobate nanocrystals dispersed in a silica glass matrix. J. Solid State Chem. 182, 1229–1234 (2009)

    Article  Google Scholar 

  3. P. Kumar, S.M. Babu, S. Perero, R.L Sai, I. Bhaumik, S.G. Morthy, A.K. Karnal, X-ray photoelectron spectroscopy, high-resolution X-ray dirraction and refractive index analyses of Ti-doped lithium niobate (Ti:LiNbO3) nonlinear optical single crystal. Pramana 75, 1035–1040 (2010)

    Article  Google Scholar 

  4. G.W. Burr, S. Diziain, M.P. Bernal, Theoretical study of lithium niobate slab waveguides for integrated optics applications. Opt. Mater. 31, 1492–1497 (2009)

    Article  Google Scholar 

  5. F. Meriche, A. Boudrioua, R. Kremer, E. Dogheche, E. Neiss-Clauss, R. Mouras, A. Fischer, M.-R. Beghoul, E. Fogarassy, N. Boutaoui, Fabrication and investigation of 1D and 2D structures in LiNbO3 thin films by pulsed laser ablation. Opt. Mater. 32, 1427–1434 (2010)

    Article  Google Scholar 

  6. M. Aufray, S. Menuel, Y. Fort, J. Eschbach, D. Rouxel, B. Vincent, New synthesis of nanosized niobium oxides and lithium niobate particles and their characterization by XPS analysis. J. Nanosci. Nanotechnol. 9, 4780–4785 (2009)

    Article  Google Scholar 

  7. N.E. Stankovaa, S.H. Tonchevb, E. Gyorgyc, G. Socolc, I. Mihailescuc, Pulsed laser deposition of LiNbO3 thin films from Li-Rich Targets. J. Optoelectron. Adv. Mater. 6, 1345–1348 (2004)

    Google Scholar 

  8. L. Chen, Q. Xu, M.G. Wood, R.M. Reano, Hybrid silicon and lithium niobate electro-optical ring modulator. Optica 1, 112–118 (2014)

    Article  Google Scholar 

  9. W. Kim, S.-W. Kwon, W. Jeong, G. Son, K. Lee, W. Choi, W. Yang, H. Lee, H. Lee, Integrated optical modulator for signal upconversion over radio-on-fiber link. Opt. Express 17, 2638–2645 (2009)

    Article  Google Scholar 

  10. Z.T. Salim, U. Hashim, M.K. Md Arshad, M.A. Fakhri, Simulation, Fabrication and Validation of Surface Acoustic Wave Layered Sensor Based on ZnO/IDT/128 YX LiNbO3. Int. J. Appl. Eng. Res. 11, 8785–8790 (2016)

    Google Scholar 

  11. Z, Zhou, B. Wang, Sh. Lin, Y. Li and K. Wang, Investigation of optical photorefractive properties of Zr:Fe:LiNbO3 crystals. Opt. Laser Technol. 44, 337–340 (2012)

    Article  Google Scholar 

  12. L.H. Wang, D.R. Yuan, X.L. Duan, X.Q. Wang, F.P. Yu, Synthesis, and characterization of fine lithium niobate powders by sol- gel method. Cryst. Res. Technol. 42, 321–324 (2007)

    Article  Google Scholar 

  13. Yi Lu, P. Dekker, Growth and characterization of lithium niobate planar waveguides by liquid phase epitaxy. J. Cryst. Growth 311, 1441–1445 (2009)

    Article  Google Scholar 

  14. Y. Akiyama, K. Shitanaka, H. Murakami, Y. Shin, M. Yoshida, N. Imaishi, Epitaxial growth of lithium niobate film using metalorganic chemical vapor deposition. Thin Solid Films 515, 4975–4979 (2007)

    Article  Google Scholar 

  15. R. Ageba, Y. Kadota, T. Maeda, N. Takiguchi, T. Morita, Ultrasonically-assisted hydrothermal method for ferroelectric material synthesis. J. Korean Phys. Soc. 57, 918–923 (2010)

    Article  Google Scholar 

  16. Y. Kang, S. Jeong, S. Lee, J. Hwang, J. Kim, C. Cho, Hetero-epitaxial growth of LiNbO3 thin film on GaN/Al2O3 by pulsed laser deposition. J. Korean Phys. Soc. 49, S625–S628 (2006)

    Google Scholar 

  17. J. Son, S.S. Orlov, B. Phillips, L. Hesselink, Pulsed laser deposition of single phase LiNbO3 thin film waveguides. J. Electroceram. 17, 591–595 (2006)

    Article  Google Scholar 

  18. M. Nyman, T.M. Anderson, P.P. Provencio, Comparison of aqueous and non-aqueous soft-chemical syntheses of lithium niobate and lithium tantalate powders. Cryst. Growth Des. 9, 1036–1040 (2009)

    Article  Google Scholar 

  19. B.K. Yun, Y.K. Park, M. Lee, N. Lee, W. Jo, S. Lee, J. Hoon Jung, Lead-free LiNbO3 nanowire-based nanocomposite for piezoelectric power generation. Nanoscale Res. Lett. 9, 4–10 (2014)

    Article  Google Scholar 

  20. X. Wang, Z. Ye, G. Wu, L. Cao, B. Zhao, Growth of textured LiNbO3 thin film on Si (111) substrate by pulsed laser deposition. Mater. Lett. 59, 2994–2997 (2005)

    Article  Google Scholar 

  21. X. Wang, Y. Liang, S. Tian, W. Man, J. Jia, Oxygen pressure dependent growth of pulsed laser deposited LiNbO3 films on diamond for surface acoustic wave device application. J. Cryst. Growth 375, 73–77 (2013)

    Article  Google Scholar 

  22. M.A. Cauqui, J.M. Rodrfguez-Izquierdo, Application of the sol-gel methods to catalyst preparation. J. Non-Cryst. Solids 147, 724–738 (1992)

    Article  Google Scholar 

  23. S.J. Teichner, G.A. Nicolaon, M.A. Vicarini G.E.E Gardes, Adv. Colloid Interface Sci. 5(3), 245–273 (1976)

    Article  Google Scholar 

  24. L. Znaidi, T. Touam, D. Vrel, N. Souded, S. Ben Yahia, O. Brinza, A. Fischer, A. Boudriou, Acta Phys. Pol. A, 121, 165–168 (2012)

    Article  Google Scholar 

  25. C.K.F. Ho, K. Pita, N.Q. Ng, C.H. Kam, Optical functions of (x)GeO2:(1-x)SiO2 films determined by multi-sample and multi-angle spectroscopic ellipsometry. Opt. Express 13(5) 1049–1054 (2005)

    Article  Google Scholar 

  26. E.M. Yeatman, E.J.C. Dawnay, Doped sol-gel films for silica-on-silicon photonic components. J. Sol-Gel Sci. Technol. 8, 1007–1011 (1997)

    Google Scholar 

  27. X.L. Cheng, H. Zhao, L.H. Huo, S. Gao, J.G. Zhao, ZnO nanoparticulate thin film: preparation, characterization and gas-sensing property. Sens. Actuators B 102, 248–252 (2004)

    Article  Google Scholar 

  28. M.I. Khan, K.A. Bhatti, R. Qindeel, L.G. Bousiakou, N. Alonizan, Fazal-e-Aleem, Investigations of the structural, morphological and electrical properties of multilayer ZnO/TiO2 thin films, deposited by sol–gel technique. Results Phys. 6, 156–160 (2016)

    Article  Google Scholar 

  29. F.E. Ghodsi, H. Absalan, Comparative Study of ZnO thin films prepared by different sol-gel route. Acta Phys. Pol. A 118 659–664 (2010)

    Article  Google Scholar 

  30. X.M. Chen, Crystallization characteristics of LiNbO3 derived from sol-gel. J. Mater. Sci 7, 51–54 (1996)

    Google Scholar 

  31. A.V.P. Rao, D.S. Paik, S. Komarneni, Sol-gel synthesis of lithium niobate powder and thin films using lithium 2,4-pentanedionate as lithium source. J. Electroceram. 2, 157–162 (1998)

    Article  Google Scholar 

  32. D. Mikolasova, K. Rubesova, T. Hlasek, V. Jakes, J. Oswald, J. Remsa, Influence of Preparation Conditions on the Microstrcture and Optical Properties of LiNbO3 thin films. Ceram.-Silik. 59(2) 164–168 (2015)

    Google Scholar 

  33. M.A. Fakhri, M.S. Alwazni, Y. Al-Douri, E.T. Salim, U. Hashim, C.C. Woei, Preparation of Nanophotonics LiNbO3 thin films and studying their morphological and structural properties by sol-gel method for waveguide applications. World Acad. Sci. Eng. Technol. Int J. Chem. Mol. Nucl. Mater. Metall. Eng. 10, 500–505 (2016)

    Google Scholar 

  34. M.A. Fakhri, Y. Al-Douri, E.T. Salim, U. Hashim, Y. Yusof, E.B. Choo, Z.T. Salim, Y.N. Jurn, Structural properties and surface morphology analysia of nanophotonic LiNbO3. ARPN J. Eng. Appl. Sci. 11 (2016), 4974–4978

    Google Scholar 

  35. A.R. Kamalin, D.J. Fray, Preparation of lithium niobate particles via reactive molten salt synthesis method. Ceram. Int. 40, 1835–1841 (2014)

    Article  Google Scholar 

  36. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, D. Prakash, K.D. Verma, Optical investigation of nanophotonic lithium niobate based optical waveguide. Appl. Phys. B 121(2015) 107–116

    Article  Google Scholar 

  37. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, XRD analysis and morphological studies of spin coated linbo3 nano photonic crystal prepared for optical waveguide application. Adv. Mater. Res. 1133, 457–461 (2016)

    Article  Google Scholar 

  38. N. Kokanyan, Etudes par spectroscopie Raman polarisée des effets photo- électrostrictifs dans LiNbO3 photoréfractif, DOCTEUR de L’UNIVERSITÉ DE LORRAINE, 2015

  39. A.Z. Simoes, M.A. Zaghetea, B.D. Stojanovic, C.S. Riccardi, A. Ries, A.H. Gonzalez, J.A. Varela, LiNbO3 thin films prepared through polymeric precursor method. Mater. Lett. 57, 2333–2339 (2003)

    Article  Google Scholar 

  40. E.T. Salim, M.S. Al Wazny, M.A. Fakhry, Glancing Anglr Reactive Pulsed Laser Deposition (GRPLD) for Bi2O3/Si Heterostructure. Mod. Phys. Lett. B 27, 1350122 (2013)

    Article  Google Scholar 

  41. M.A. Fakhri, Y. Al-Douri, U. Hashim, E.T. Salim, Optical investigations of photonics lithium niobate. Sol. Energy 120, 381–388 (2015)

    Article  Google Scholar 

  42. E.T. Salim, M.A. Fakhri, H. Hassan, Metal oxide nanoparticles suspension for optoelectronic device fabrication. Int. J. Nanoelectron. Mater. 6, 121–128 (2013)

    Google Scholar 

  43. E.T. Salim, Optoelectronic properties of Fe2O3/Si heterojunction prepared by rapid thermal oxidation method. Indian J. Phys. 87, 349–353 (2013)

    Article  Google Scholar 

  44. Z.T. Salim, U. Hashim, M.K.Md. Arshad, M.A. Fakhri, E.T. Salim, Zinc oxide flakes-corolla lobes like nano combined structure for SAW applications. Mater. Res. Bull. 86, 215–219 (2017)

    Article  Google Scholar 

  45. M.A. Fakhri, U. Hashim, E.T. Salim, T. Zaid, Salim, Preparation and charactrization of photonic LiNbO3 generated from mixing of new raw materials using spry pyrolysis method. J. Mater. Sci. 27(12), 13105–13112 (2016)

    Google Scholar 

  46. A. Kadhim, E. T. Salim, S.M. Fayadh, A.A. Al-Amiery, A.H. Kadhum, A.B. Mohamad, Effect of multipath laser shock processing on microhardness, surface roughness, and wear resistance of 2024-T3 Al alloy. Sci. World J. 2014, 490951 (2014). doi:10.1155/2014/490951

    Article  Google Scholar 

  47. M.A. Muhsien, E.T. Salem, I.R. Agool, H.H. Hamdan, Gas sensing of Au/n-SnO2/p-PSi/c-Si heterojunction devices prepared by rapid thermal oxidation. Appl. Nanosci. 4, 719–732 (2014)

    Article  Google Scholar 

  48. P. Alfaro, A. Miranda, A.E. Ramos, M. Cruz-Irisson, Hydrogenated Ge nanocrystals: band gap evolution with increasing size. Braz. J. Phys. 36, 375–378 (2006)

    Article  Google Scholar 

  49. V. Kumar, S. Juneja, S.K. Sharma, V. Singh, T. P. Sharma, Optimization of sintering temperature in CdZnS films using reflection spectroscopy. J. Coat. Technol. Res. 7, 399–402 (2010)

    Article  Google Scholar 

  50. W.D. Johnston, I.P. Kaminow, Temperature dependence of Raman and Rayleigh scattering in LiNbO3 and LiTaO3. Phys. Rev. 168, 1045–1054 (1968)

    Article  Google Scholar 

  51. G. Stone, B. Knorr, V. Gopalan, V. Dierolf, Frequency shift of Raman modes due to an applied electric field and domain inversion in LiNbO3,. Phys. Rev. B 84, 134303 (2011)

    Article  Google Scholar 

  52. R. Hammoum, M.D. Fontana, P. Bourson, V.Y. Shur, Characterization of PPLN-microstructures by means of Raman spectroscopy, Appl. Phys. A 91, 65–67 (2008)

    Article  Google Scholar 

  53. L. Mateos, L.E. Bausá, M.O. Ramírez, Micro-spectroscopic characterization of ferroelectric domain structures in Yb3+:LiNbO3 prepared by electron beam writing. Opt. Mater. Express 4, 1078–1087 (2014)

    Google Scholar 

  54. M.R. Beghoul, A. Boudrioua, R. Kremer, M.D. Fontana, B. Fougere, C. Darraud, J.C. Vareille, P. Moretti, Micro-Raman spectroscopy investigation of the electronbeam irradiation of LiNbO3 surface for 2D photonicband gap grating inscription. Opt. Mater. 31, 136–142 (2008)

    Article  Google Scholar 

  55. H. Huang, J. I. Dadap, O. Gaathon, I. P. Herman, R. M. Osgood, Jr., S. Bakhru, H. Bakhru, A micro-Raman spectroscopic investigation ofHe+-irradiation damage in LiNbO3. Opt. Mater. Express 3, 126–142 (2013)

    Article  Google Scholar 

  56. R. Poilblanc, F. Crasnier, Spectroscopies Infrarouge et Raman, EDP Sciences, Grenoble 39, 466–470 (2006)

  57. R. Loudon, The Raman effect in crystals. Adv. Phys. 13, 423 (1964)

    Article  Google Scholar 

  58. I.-K. Jeong, Correlated thermal motion in ferroelectric LiNbO3 studied using neutron total scattering and a rietveld analysis. J. Korean Phys. Soc. 59, 2756–2759 (2011)

    Article  Google Scholar 

  59. A. Z Simões, A.H.M González, A.A Cavalheiro, M.A Zaghete, B.D Stojanovic, J.A Varela, Effect of magnesium on structure and properties of LiNbO3 prepared from polymeric precursors. Ceram. Int. 28, 265–270 (2002)

    Article  Google Scholar 

  60. N.S.L.S. Vasconcelos, J.S. Vasconcelos, V. Bouquet, S.M. Zanetti, E.R. Leite, E. Longo, L.E.B. Soledade, F.M. Pontes, M. Guilloux-Viry, A. Perrin, M.I. Bernardi, J.A. Varela, Epitaxial growth of LiNbO3 thin films in a microwave oven. Thin Solid Films 436, 213–219 (2003)

    Article  Google Scholar 

  61. D.E. Zelmon, D.L. Small, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate. J. Opt. Soc. Am. B 14, 3319–3323 (1997)

    Article  Google Scholar 

  62. A. Ridah, P. Bourson, M.D. Fontana, G. Malovichko, The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO3. J. Phys. 9, 9687 (1997)

    Google Scholar 

  63. I.P. Kaminow, W.D. Johnston Jr., Quantitative determination of the electro-optic effect in LiNbO3 and LiTaO3. Phys. Rev. 160, 519 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makram A. Fakhri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakhri, M.A., Salim, E.T., Wahid, M.H.A. et al. Synthesis and characterization of nanostructured LiNbO3 films with variation of stirring duration. J Mater Sci: Mater Electron 28, 11813–11822 (2017). https://doi.org/10.1007/s10854-017-6989-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-6989-0

Keywords

Navigation