Synthesis of carbon modified TiO2 photocatalysts with high photocatalytic activity by a facile calcinations assisted solvothermal method

  • Ye Yuan
  • Xin QianEmail author
  • Huanre Han
  • Yulong Chen


We demonstrate a simple and green synthetic pathway to prepare well crystalline carbon modified titanium dioxide (C–TiO2). For the first step, the TiO2 products were synthesized using the non-aqueous solvothermal route, and for the second step, the as-prepared TiO2 was calcined to dope carbon. Such a method can avoid the incorporation of extra carbon sources but utilize the organic group in the alcohols instead. The structures, morphologies, and surface chemical states of the samples were characterized using X-ray diffraction, scanning electron microscope, Fourier-transform infrared spectroscopy, UV–Vis, photoluminescence spectra, thermal analyses, and X-ray photoelectron spectroscopy. The experimental results show that the obtained C–TiO2 products composed of well crystalline TiO2 coated with carbon species on their surfaces. The existence of the carbon can improve the adsorption of light and retard the recombination of photo-generated electron–hole pairs. Measurements of the photocatalytic degradation of Rhodamine B show that the photocatalytic activity of the C–TiO2 photocatalysts, especially TB15-300, is higher than that of other samples.


TiO2 Photocatalytic Activity Benzyl Alcohol Photogenerated Electron Solvothermal Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by Zhejiang Global Village Environmental Protection Technology Co., LTD. We thank Jie Li for his help in using SEM.


  1. 1.
    P.V. Kamat, J. Phys. Chem. B 106, 7729–7744 (2002)CrossRefGoogle Scholar
  2. 2.
    M. Karmaoui, D.M. Tobaldi, A.S. Skapin, R.C. Pullar, M.P. Seabra, J.A. Labrincha, V.S. Amaral, RSC Adv. 4, 46762–46770 (2014)Google Scholar
  3. 3.
    M.R. Hoffmann, W. Choi, D.W. Bahnemann, Chem. Rev. 95, 69–96 (1995)CrossRefGoogle Scholar
  4. 4.
    S.K. Choi, S. Kim, K.L. Sang, H. Park, J. Phys. Chem. C 114, 16475–16480 (2010)CrossRefGoogle Scholar
  5. 5.
    N.K. Dey, M.J. Kim, K.D. Kim, H.O. Seo, D. Kim, Y.D. Kim, C.L. Dong, K.H. Lee, J. Mol. Catal. A Chem. 337, 33–38 (2011)CrossRefGoogle Scholar
  6. 6.
    C.V. Jagtap, V.S. Kadam, T.T. Ghogare, Y.A. Inamdar, A.A. Shaikh, R.S. Mane, A.V. Shaikh, J. Mater. Sci. 27(12), 1–5 (2016)Google Scholar
  7. 7.
    P. Govindhan, C. Pragathiswaran, J. Mater. Sci. 27, 8778–8785 (2016)Google Scholar
  8. 8.
    C. Zhang, H. He, Catal. Today 126, 345–350 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Jing, W. Zhou, G. Tian, H. Fu, Chem. Soc. Rev. 42, 9509–9549 (2013)CrossRefGoogle Scholar
  10. 10.
    O. Ola, M.M. Maroto-Valer, J. Catal. 309, 300–308 (2014)CrossRefGoogle Scholar
  11. 11.
    L.W. Zhu, L.K. Zhou, H.X. Li, H.F. Wang, J.P. Lang, Mater. Lett. 95, 13–16 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Barile, C. Casavola, G. Pappalettera, C. Pappalettere, J. Alloy Compd. 582, 236–240 (2014)CrossRefGoogle Scholar
  13. 13.
    P. Zheng, B. Bai, W. Guan, H. Wang, Y. Suo, J. Mater. Sci. 27, 1–11 (2016)CrossRefGoogle Scholar
  14. 14.
    K.Z. Qi, R. Selvaraj, T. Al Fahdi, S. Al-Kindy, Y. Kim, G.C. Wang, C.W. Tai, M. Sillanpaa, Appl. Surf. Sci. 387, 750–758 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Wang, L. Zhao, L. Bai, J. Yan, Q. Jiang, J. Lian, J. Mater. Chem. A 2, 7439–7445 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Liu, L.M. Liu, X.F. Lang, H.Y. Wang, X.W. Lou, E.S. Aydil, Energy Environ. Sci. 7, 2592–2597 (2014)CrossRefGoogle Scholar
  17. 17.
    J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, J. Liu, Chem. Commun. 50, 13971–13974 (2014)CrossRefGoogle Scholar
  18. 18.
    P. Shao, J. Tian, Z. Zhao, W. Shi, S. Gao, F. Cui, Appl. Surf. Sci. 324, 35–43 (2015)CrossRefGoogle Scholar
  19. 19.
    G. Zhang, F. Teng, C. Zhao, L. Chen, P. Zhang, Y. Wang, C. Gong, Z. Zhang, E. Xie, Appl. Surf. Sci. 311, 384–390 (2014)CrossRefGoogle Scholar
  20. 20.
    S. Sakthivel, H. Kisch, Angew. Chem. 42, 4908–4911 (2003)CrossRefGoogle Scholar
  21. 21.
    W. Ren, Z. Ai, F. Jia, L. Zhang, X. Fan, Z. Zou, Appl. Catal. B 69, 138–144 (2007)CrossRefGoogle Scholar
  22. 22.
    X. Wu, Y. Shu, D. Qiang, C. Guo, H. Li, T. Kimura, T. Sato, Appl. Catal. B 142, 450–457 (2013)CrossRefGoogle Scholar
  23. 23.
    Z. Ai, W. Na, L. Zhang, Catal. Today 224, 180–187 (2014)CrossRefGoogle Scholar
  24. 24.
    J. Ananpattarachai, S. Seraphin, P. Kajitvichyanukul, Environ. Sci. Pollut. Res. 23, 3884–3896 (2016)CrossRefGoogle Scholar
  25. 25.
    W. Wei, C. Yu, Q. Zhao, G. Li, Y. Wan, Chemistry 19, 566–577 (2013)CrossRefGoogle Scholar
  26. 26.
    O. Akhavan, M. Abdolahad, Y. Abdi, S. Mohajerzadeh, Carbon 47, 3280–3287 (2009)CrossRefGoogle Scholar
  27. 27.
    V. Etacheri, G. Michlits, M.K. Seery, S.J. Hinder, S.C. Pillai, ACS Appl. Mater. Interface 5, 1663–1672 (2013)CrossRefGoogle Scholar
  28. 28.
    C. Zhan, C. Feng, J. Yang, D. Dai, X. Cao, M. Zhong, J. Hazard. Mater. 267, 88–97 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Hou, Q. Lu, H. Wang, H. Li, Y. Zhang, S. Zhang, Mater. Lett. 173, 13–17 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringZhejiang University of TechnologyHangzhouPeople’s Republic of China

Personalised recommendations