Skip to main content
Log in

Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work reports on synthesis, characterization, adsorption ability, formation rate of hydroxyl radicals (OH), photocatalytic oxidation kinetics, and mineralization ability of C-doped titanium dioxide (TiO2), N-doped TiO2, and C,N co-doped TiO2 prepared by the sol–gel method. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV–visible spectroscopy were used to analyze the titania. The rate of formation of OH for each type of titania was determined, and the OH-index was calculated. The kinetics of as-synthesized TiO2 catalysts in photocatalytic oxidation of 2-chlorophenol (2-CP) under visible light irradiation were evaluated. Results revealed that nitrogen was incorporated into the lattice of titania with the structure of O-Ti-N linkages in N-doped TiO2 and C,N co-doped TiO2. Carbon was joined to the Ti-O-C bond in the C-doped TiO2 and C,N co-doped TiO2. The 2-CP adsorption ability of C,N co-doped TiO2 and C-doped TiO2 originated from a layer composed of a complex carbonaceous mixture at the surface of TiO2. C,N co-doped TiO2 had highest formation rate of OH and photocatalytic activity due to a synergistic effect of carbon and nitrogen co-doping. The order of photocatalytic activity per unit surface area was the same as that of the formation rate of OH unit surface area in the following order: C,N co-doped TiO2 > C-doped TiO2 > N-doped TiO2 > undoped TiO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ananpattarachai J, Kajitvichyanukul P, Seraphin S (2009) Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J Hazard Mater 168:253–261. doi:10.1016/j.jhazmat.2009.02.036

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki A, Yaga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271. doi:10.1126/science.1061051

    Article  CAS  Google Scholar 

  • Bertelli M, Selli E (2006) Reaction paths and efficiency of photocatalysis on TiO2 and of H2O2 photolysis in the degradation of 2-chlorophenol. J Hazard Mater 138:46–52. doi:10.1016/j.jhazmat.2006.05.030

    Article  CAS  Google Scholar 

  • Bubacz K, Kusiak-Nejman E, Tryba B, Morawski AW (2013) Investigation of OH radicals formation on the surface of TiO2/N photocatalyst at the presence of terephthalic acid solution. Estimation of optimal conditions. J Photochem Photobiol A 261:7–11. doi:10.1016/j.jphotochem.2013.04.003

    Article  CAS  Google Scholar 

  • Chen X, Burda C (2004) Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles. J Phys Chem B 108:15446–15449. doi:10.1021/jp0469160

    Article  CAS  Google Scholar 

  • Chen D, Jiang Z, Geng J, Wang Q, Yang D (2007) Carbon and nitrogen co-doped TiO2 with enhanced visible-light photocatalytic activity. Ind Eng Chem Res 46:2741–2746. doi:10.1021/ie061491k

    Article  CAS  Google Scholar 

  • Cheng P, Li W, Zhou T, Jin Y, Gu M (2004) Physical and photocatalytic properties of zinc ferrite doped titania under visible light irradiation. J Photochem Photobiol A 168:97–101

    Article  CAS  Google Scholar 

  • Cong Y, Chen F, Zhang J, Anpo M (2006) Carbon and nitrogen-codoped TiO2 with high visible light photocatalytic activity. Chem Lett 35:800–801

    Article  CAS  Google Scholar 

  • Di Valentin C, Pacchioni G, Selloni A (2005) Theory of carbon doping of titanium dioxide. Chem Mater 17:6656–6665

    Article  Google Scholar 

  • Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56

    Article  Google Scholar 

  • Dong F, Zhao W, Wu Z (2008) Characterization and photocatalytic activities of C, N and S co-doped TiO2 with 1D nanostructure prepared by the nano-confinement effect. Nanotechnology 19(365607):1–10

    Google Scholar 

  • Han C, Pelaez M, Likodimos V, Kontos AG, Falaras P, O’Shea K, Dionysiou DD (2011) Innovative visible light-activated sulfur doped TiO2 films for water treatment. Appl Catal B 107:77–87

    Article  CAS  Google Scholar 

  • Heidt LJ, Tregay GW, Middleton FA (1979) Influence of the pH upon the photolysis of the uranyl oxalate actinometer system. J Phys Chem 74:1876–1882

    Article  Google Scholar 

  • Ishibashi K, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2:207–210

    Article  CAS  Google Scholar 

  • Kamat PV (1993) In: Ollis DF, Al-Ekabi H (eds) Photocatalytic purification and treatment of water and air. Elsevier Science Publishers BV, Amsterdam, pp 455–500

    Google Scholar 

  • Liu GL, Han C, Pelaez M, Zhu DW, Liao SJ, Likodimos V, Ioannidis N, Kontos AG, Falaras P, Dunlop PSM, Byrne JA, Dionysiou DD (2012) Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles. Nanotechnology 23:294003

    Article  Google Scholar 

  • Ohno T, Tsubota T, Toyofuku M, Inaba R (2004) Photocatalytic activity of a TiO2 photocatalyst doped with C4+ and S4+ ions having a rutile phase under visible light. Catal Lett 98:255–258

    Article  CAS  Google Scholar 

  • Pang YL, Abdullah AZ (2013) Effect of carbon and nitrogen co-doping on characteristics and sonocatalytic activity of TiO2 nanotubes catalyst for degradation of Rhodamine B in water. Chem Eng J 214:129–138

    Article  CAS  Google Scholar 

  • Papirer E, Lacroix R, Donnet J-B, Nanse G, Fioux P (1995) XPS study of the halogenation of carbon black—part 2. Chlorination. Carbon 33:63–72

    Article  CAS  Google Scholar 

  • Peiró AM, Ayllón JA, Peral J, Doménech X (2001) TiO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds. Appl Catal B 30:359–373

    Article  Google Scholar 

  • Pelaez M, de la Cruz AA, Stathatos E, Falaras P, Dionysiou DD (2009) Visible light-activated NF-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water. Catal Today 144:19–25

    Article  CAS  Google Scholar 

  • Ragaini V, Selli E, Bianchi CL, Pirola C (2001) Sono-photocatalytic degradation of 2-chlorophenol in water: kinetic and energetic comparison with other techniques. Ultrason Sonochem 8:251–258

    Article  CAS  Google Scholar 

  • Ren W, Ai Z, Jia F, Zhang L, Fan X, Zou Z (2007) Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2. Appl Catal B 69:138–144

    Article  CAS  Google Scholar 

  • Sakthivel S, Janczarek M, Kisch H (2004) Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J Phys Chem B 108:19384–19387

    Article  CAS  Google Scholar 

  • Shao G-S, Zhang X-J, Yuan Z-Y (2008) Preparation and photocatalytic activity of hierarchically mesoporous-macroporous TiO2-xNx. Appl Catal B 82:208–218

    Article  CAS  Google Scholar 

  • Shao P, Tian J, Zhao Z, Shi W, Gao S, Cui F (2015) Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol. Appl Surf Sci 324:35–43

    Article  CAS  Google Scholar 

  • Sun H, Bai Y, Jin W, Xu N (2008) Visible-light-driven TiO2 catalysts doped with low-concentration nitrogen species. Sol Energy Mater Sol Cells 92:76–83

    Article  CAS  Google Scholar 

  • Suriye K, Praserthdam P, Jongsomjit B (2007) Control of Ti3+ surface defect on TiO2 nanocrystal using various calcination atmospheres as the first step for surface defect creation and its application in photocatalysis. Appl Surf Sci 253:3849–3855

    Article  CAS  Google Scholar 

  • Tachikawa T, Tojo S, Kawai K, Endo M, Fujitsuka M, Ohno T, Nishijima K, Miyamoto Z, Majima T (2004) Photocatalytic oxidation reactivity of holes in the sulfur- and carbon-doped TiO2 powders studied by time-resolved diffuse reflectance spectroscopy. J Phys Chem B 108:19299–19306

    Article  CAS  Google Scholar 

  • Tryba B, Morawski AW, Inagaki M, Toyota M (2006) The kinetic of phenol decomposition under UV irradiation with and without H2O2 on TiO2, Fe–TiO2 and Fe–C–TiO2 photocatalysts. Appl Catal B 63:215–221

    Article  CAS  Google Scholar 

  • Wu Y, Xing M, Zhang J, Chen F (2010) Effective visible light-active boron and carbon modified TiO2 photocatalyst for degradation of organic pollutant. Appl Catal B 97:182–189

    Article  CAS  Google Scholar 

  • Xiao Q, Ouyang L (2009) Photocatalytic activity and hydroxyl radical formation of carbon-doped TiO2 nanocrystalline: effect of calcination temperature. Chem Eng J 148:248–253

    Article  CAS  Google Scholar 

  • Yang J, Bai H, Tan X, Lian J (2006) IR and XPS investigation of visible-light photocatalysis-nitrogen–carbon-doped TiO2 film. Appl Surf Sci 253:1988–1994

    Article  CAS  Google Scholar 

  • Yu JC, Ho WK, Yu JG, Yip H, Wong PK, Zhao JC (2005) Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol 39:1175–1179

    Article  CAS  Google Scholar 

  • Zhang X, Qin J, Xue Y, Yu P, Zhang B, Wang L, Liu R (2014) Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Nat Sci Rep 4:4596

    Google Scholar 

  • Zhao ZY, Liu QJ, Zhu ZHQ (2008) Effects of S doping on the electronic structures and photocatalytic properties of anatase TiO2. Acta Phys 57:3760–3767

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Naresuan University Research (No. R2558B045) through Center of Excellence on Environmental Research and Innovation, Faculty of Engineering, Naresuan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puangrat Kajitvichyanukul.

Additional information

Responsible editor: Santiago V. Luis

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 118 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ananpattarachai, J., Seraphin, S. & Kajitvichyanukul, P. Formation of hydroxyl radicals and kinetic study of 2-chlorophenol photocatalytic oxidation using C-doped TiO2, N-doped TiO2, and C,N Co-doped TiO2 under visible light. Environ Sci Pollut Res 23, 3884–3896 (2016). https://doi.org/10.1007/s11356-015-5570-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5570-8

Keywords

Navigation