Skip to main content
Log in

Investigation of photo-induced effect on electrical properties of Au/PPy/n-Si (MPS) type schottky barrier diodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Au/PPy/n-Si (MPS) type Schottky barrier diodes (SBDs) were produced and their current–voltage (I–V) characteristics were measured in the positive and negative bias regions at 300 K. The basic electronic quantities such as reverse-saturation current (I o ), ideality factor (n), zero-bias barrier height (Ф B0 ), series (R s ) and shunt resistances (R sh ) were obtained by using I–V data in total darkness and illumination (100 W/m2). The values of these parameters were found as 7.79 × 10−9 A, 5.41, 0.75 eV, 1 kΩ and 130 MΩ in dark) and 4 × 10−9 A, 4.89, 0.77 eV, 0.9 kΩ and 1.02 MΩ under illumination), respectively. Also the energy density distribution behaviors of surface states (N ss ) have been acquired by calculation of effective barrier height (Ф e ) and ideality factor n (V) depending on voltage in total darkness and illumination. The values of N ss show an exponentially increase from the mid-gap of Si to the lower part of conduction band (E c ) for two conditions. The possible current conduction mechanisms were determined by plotting of the double logarithmic I–V plots in the positive voltage zone and the value of current was found proportional to voltage (I∼V m). The high values of n and R s were ascribed to the certain density distribution of N ss localized at semiconductor/PPy interface, surface conditions, barrier inequality, the thickness of PPy interlayer and its roughness. The open-circuit voltage of the photodiode was found as 0.36 V under 100 W/m2 illumination level. This is evidence that the fabricated sample is very sensitive to illumination. Therefore, it can be put into practice in optoelectronic industries as a photodiode or solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Gökçen, M. Yıldırım, A. Demir, A. Allı, S. Allı, B. Hazer, Compos. Part B 57, 8 (2014)

    Article  Google Scholar 

  2. Ç. Bilkan, S. Zeyrek, S.E. San, Ş. Altındal, Mater. Sci. in Sem. Process. 32, 137 (2015)

    Article  Google Scholar 

  3. S. Alialy, H. Tecimer, H. Uslu, Ş. Altındal, J. Nanomed. Nanotechnol. 4, 1000167 (2013)

    Article  Google Scholar 

  4. H.G. Çetinkaya, H. Tecimer, H. Uslu, Ş. Altındal, Curr. Appl. Phys. 13, 1150 (2013)

    Article  Google Scholar 

  5. Ö. Güllü, M. Çankaya, M. Biber, A. Türüt, J. Phys. Condens. Matter. 20, 215210 (2008)

    Article  Google Scholar 

  6. H. Uslu, Ş. Altındal, İ. Dökme, J. Appl. Phys 108, 104501 (2010)

    Article  Google Scholar 

  7. H. Uslu, İ. Dökme, I.M. Afandiyeva, Ş. Altındal, Surf. Interface Anal. 42, 807 (2010)

    Article  Google Scholar 

  8. Ö. Vural, Y. Şafak, Ş. Altındal, A. Türüt, Curr. App. Phys 10, 761 (2010)

    Article  Google Scholar 

  9. T. Kılıçoğlu, A. Tombak, Y.S. Ocak, M. Aydemir, Microelectron. Eng. 129, 91 (2014)

    Article  Google Scholar 

  10. A. Tombak, Y.S. Ocak, S. Asubay, T. Kılıçoğlu, F. Özkahraman, Mater. Sci. in Sem. Process. 24, 187 (2014)

    Article  Google Scholar 

  11. A. Kaya, S. Zeyrek, S.E. San, Ş Altındal, Chin. Phys. B. 23, 018506 (2014)

    Article  Google Scholar 

  12. Ş. Altındal, T. Tunç, H. Tecimer, İ. Yücedağ, Mater. Sci. in Sem. Process. 28, 48 (2014)

    Article  Google Scholar 

  13. S. Demirezen, Ş. Altındal, İ. Uslu, Curr. Appl. Phys 13, 53 (2013)

    Article  Google Scholar 

  14. İ. Dökme, Ş. Altındal, İ. Uslu, J. App. Poly. Sci. 125, 1185 (2012)

    Article  Google Scholar 

  15. İ. Dökme, Ş. Altındal, Fibers Polym. 15, 2253 (2014)

    Article  Google Scholar 

  16. S.A. Yerişkin, H. Uslu, T. Tunç, Ş. Altındal, In International Congrees on Advances applied Physics and Materials Science, AIP Conference Proceedings Vol 1400 (2011) p. 541

  17. M. Gökçen, A. Allı, Philos. Mag 94(9), 925 (2014)

    Article  Google Scholar 

  18. A. Demir, O. Köysal, Philos. Mag. 96(22), 2362 (2016)

    Article  Google Scholar 

  19. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  20. E.H. Rhoderick, R.H. Williams, Metal Semiconductor Contacts, 2nd edn. (Clarendon, Oxford, 1988)

    Google Scholar 

  21. B.L. Sharma, Metal-semiconductor Schottky barrier junctions and their applications. (Plenum, New York, 1984)

    Book  Google Scholar 

  22. E.H. Nicollian, J.R. Brews, MOS (Metal-Oxide-Semiconductor) physics and technology, (Wiley, New York, 1982)

    Google Scholar 

  23. S.O. Tan, H.U. Tecimer, O. Çiçek, H. Tecimer, İ. Orak, Ş. Altındal, J. Mater. Sci.-Mater. El. 27, 8340 (2016)

    Article  Google Scholar 

  24. O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, Ş. Altındal, İ. Uslu, Compos. Part. B-Eng. 98, 260 (2016)

    Article  Google Scholar 

  25. H. Uslu, A. Bengi, S.Ş. Çetin, U. Aydemir, S. Altındal, Ş.T. Aghaliyeva, S. Özçelik, J. Alloy. Compd. 507, 190 (2010)

    Article  Google Scholar 

  26. I.H. Campell, S. Rubin, T.A. Zawodzinski, J.D. Kress, R.L. Martin, D.L. Smith, N.N. Barashkov, J.P. Ferraris, Phys. Rew. B. 54, R14321 (1996)

    Article  Google Scholar 

  27. İ. Yücedağ, A. Kaya, Ş. Altındal, Int. J. Mod. Phys. B 28, 1450153 (2014)

    Article  Google Scholar 

  28. A.F. Özdemir, D.A. Aldemir, A. Kökçe, Ş. Altındal, Synth. Met. 159, 1427 (2009)

    Article  Google Scholar 

  29. C. Siegers, B. Oláh, U. Würfel, J. Hohl-Ebinger, A. Hinsch, R. Haag, Sol. Energy Mater. Sol. Cells. 93, 552 (2009)

    Article  Google Scholar 

  30. F. Yakuphanoğlu, B.J. Lee, Physica B 390, 151 (2007)

    Article  Google Scholar 

  31. M. Sağlam, D. Korucu, A. Türüt, Polymer 45, 7335 (2004)

    Article  Google Scholar 

  32. A. Srivastava, P. Chakrabarti, Synt. Met. 207, 96 (2015)

    Article  Google Scholar 

  33. H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, A.J. Heeger, J. Chem. Soc, Chem. Com. 16, 578 (1977)

    Article  Google Scholar 

  34. C.C. Ku, R. Liepins, Electrical properties of polymers: chemical principles. (Wiley, New York, 1987)

    Google Scholar 

  35. J. Stejskal, R.G. Gilbert, P. Appl. Chem. 74, 857 (2002)

    Google Scholar 

  36. H.C. Pant, M.K. Patra, S.C. Negi, A. Bhatia, S.R. Vadera, N. Kumar, Bull. Mater. Sci. 29, 379 (2006)

    Article  Google Scholar 

  37. A.G. MacDiarmid, Angew. Chem. Int. Ed 40, 2581 (2001)

    Article  Google Scholar 

  38. E.H. Yu, K. Sundmacher, Proc. Saf. Env. Protec. 85, 489 (2007)

    Article  Google Scholar 

  39. A. Gümüş, G. Ersöz, İ. S. Yücedağ, Bayrakdar, J. Ş. Altındal, Korean Phys. Soc. 67, 889 (2015)

    Article  Google Scholar 

  40. T. Vernitskaya, O.N. Efimov, Russ. Chem. Rev 66, 443 (1997)

    Article  Google Scholar 

  41. G.M. do Nascimento, M.A. de Souza, Nanostructured conductive polymers. (Wiley, Ohio, 2010)

    Google Scholar 

  42. J. Lin, Q. Tang, J. Wu, H. Sun, J. App. Poly. Sci. 110, 2862 (2008)

    Google Scholar 

  43. M. Omastová, M. Mičušík, Chem. Pap. 66, 392 (2012)

    Article  Google Scholar 

  44. L.X. Wang, X.G. Li, Y.L. Yang, React. Func. Poly. 47, 125 (2001)

    Article  Google Scholar 

  45. İ. Yücedağ, A. Kaya, Ş. Altındal, İ. Uslu, Chin. Phys. B. 23, 047304 (2014)

    Article  Google Scholar 

  46. S. Zeyrek, E. Acaroğlu, Ş. S. Altındal, Birdoğan, M.M. Bülbül, Curr. Appl. Phys 13, 1225 (2013)

    Article  Google Scholar 

  47. N. Baraz, İ. Yücedağ, Y. Azizian-Kalandaragh, Ş. Altındal, J. Mater. Sci. (2016). doi:10.1007/s10854-016-5662-3

    Google Scholar 

  48. İ. Yücedağ, G. Ersöz, A. Gümüş, Ş. Altındal, Int. J. Mod. Phys. B 29, 1550075 (2015)

    Article  Google Scholar 

  49. H.C. Card, E.H. Rhoderick, J. Phys, D 4, 1589 (1971)

    Article  Google Scholar 

  50. R.T. Tung, Phys. Rev. B 45, 13509 (1992)

    Article  Google Scholar 

  51. G.D. Sharma, S. Sharma, M.S. Roy, J. Mater. Sci. 15, 69 (2004)

    Google Scholar 

  52. D. Defives, O. Noblanc, C. Dua, C. Brylinski, M. Barthula, V. Aubry-Fortuna, F. Meyer, IEEE Trans. Elect. Dev. 46, 449 (1999)

    Article  Google Scholar 

  53. D.J. Ewing, L.M. Portter, Q. Wahab, X. Ma, T. Sudarshan, S. Tumakha, M. Gao, L.J. Brillson, J. Appl. Phys 101, 114514 (2007)

    Article  Google Scholar 

  54. N. Konofaos, J. Microelectron. 35, 421 (2004)

    Article  Google Scholar 

  55. H. Tecimer, S. Aksu, H. Uslu, Y. Atasoy, E. Bacaksız, Ş. Altındal, Sens. Act. A-Phys. 185, 73 (2012)

    Article  Google Scholar 

  56. S. Kar, W.E. Dahlke, S. State Elect. 15, 221 (1972)

    Article  Google Scholar 

  57. S. Wagle, V. Shirodkar, Braz. J. Phys. 30, 380 (2000)

    Google Scholar 

  58. Y.S. Ocak, M. Kulakçı, T. Kılıçoğlu, R. Turan, K. Akkılıç, Synt. Met. 159, 1603 (2009)

    Article  Google Scholar 

  59. T. Tunç, Ş. Altındal, İ. Dökme, H. Uslu, J. Elect. Mater. 40, 157 (2011)

  60. M. R. Silva, L.V.A. Scalvi, L.H.D. Antonia, D.I. Santos, J. Mater. Sci. 24, 1823 (2013)

    Google Scholar 

  61. Z. Yuan, M. Fu, Y. Ren, C. Shuai, J. Yao, J. Mater. Sci. 27, 10921 (2013)

    Google Scholar 

  62. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülçin Ersöz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ersöz, G., Yücedağ, İ., Bayrakdar, S. et al. Investigation of photo-induced effect on electrical properties of Au/PPy/n-Si (MPS) type schottky barrier diodes. J Mater Sci: Mater Electron 28, 6413–6420 (2017). https://doi.org/10.1007/s10854-016-6326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-6326-z

Keywords

Navigation