Skip to main content
Log in

Effect of illumination on electrical parameters of Au/(P3DMTFT)/n-GaAs Schottky barrier diodes

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Reverse- and forward-bias current–voltage (IV) data of the Au/(P3DMTFT)/n-GaAs Schottky barrier diodes (SBDs) were measured in dark and at under various illumination levels (from 50 to 200 W with steps of 25 W) for the purpose of examining the change in electrical parameters such as zero-bias barrier height (Φbo), ideality factor (n), reverse saturation current (Io), series resistance (Rs) and shunt resistance (Rsh) with illumination. The values of n, Φbo and Io were determined using IV data in dark as 1.34, 0.91 eV and 7.25 × 10−12 A, respectively. On the other hand, these parameters were obtained as 1.85, 0.80 eV and 5.11 × 10−10 A, respectively, when the SBD is exposed to 200 W illumination. The values of shunt resistance (Rsh) and series resistance (Rs) were determined from Ohm’s law and shown as Ri–V plots. Additionally, Cheung’s and modified Norde’s functions were also utilized for the extraction of Rs in dark and under various illumination levels. The energy density distribution profiles of interface states (Nss) were investigated for various illumination levels. The dependency of the energy density distribution profiles of interface states (Nss) on illumination levels was investigated. Obtained results suggest that these electrical parameters are sensitive to illumination. Moreover, Au/(P3DMTFT)/n-GaAs SBDs shows remarkable photovoltaic performance with the values of short-circuit current (Isc) of 1.45 × 10−6 A, open-circuit voltage (Voc) of 0.37 V and fill factor of 0.65 under 200 W illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S S Li Semiconductor Physical Electronics 2nd ed. (New York: Springer) (2006)

    Book  Google Scholar 

  2. J Allison Electronic Engineering Semiconductors and Devices. (London: McGraw-Hill College) (1990)

    Google Scholar 

  3. S Mangal, S Adhikari and P Banerji Appl. Phys. Lett. 94 223509 (2009)

    Article  ADS  Google Scholar 

  4. O Çiçek, H Uslu Tecimer, S O Tan, H Tecimer, İ Orak and Ş Altındal Compos. Part B Eng. 113 14 (2017)

    Article  Google Scholar 

  5. S O Tan, H Uslu Tecimer, O Çiçek, H Tecimer, İ Orak and Ş Altındal J. Mater. Sci. Mater. Electron. 27 8340 (2016)

    Article  Google Scholar 

  6. M Soylu and F Yakuphanoğlu Thin Solid Films 519 1950 (2011)

    Article  ADS  Google Scholar 

  7. C J Brabec, S E Shaheen, T Fromherz, F Padinger, J C Hummelen, A Dhanabalan, R A J Janssen and N S Sariciftci Synth. Met. 121 1517 (2001)

    Article  Google Scholar 

  8. A F Özdemir, D Akcan, H E Lapa, A G Yavuz and S Duman Acta Phys. Pol. A 128 B450–B454 (2015)

    Article  Google Scholar 

  9. D A Aldemir, M Esen, A Kökce, S Karataş and A F Özdemir Thin Solid Films 519 6004 (2011)

    Article  ADS  Google Scholar 

  10. Ş Aydoğan, M Sağlam and A Türüt Vacuum 77 269 (2005)

    Article  ADS  Google Scholar 

  11. H E Lapa, A Kökce, M Al-Dharob, İ Orak, A F Özdemir and Ş Altındal Eur. Phys. J. Appl. Phys. 80 10101 (2017)

    Article  ADS  Google Scholar 

  12. Ş Altındal, T Tunç, H Tecimer and İ Yücedağ Mater. Sci. Semicond. Process. 28 48 (2014)

    Article  Google Scholar 

  13. F Yakuphanoğlu, M Kandaz and B F Senkal Sensors Actuators A Phys. 153 191 (2009)

    Article  Google Scholar 

  14. H Uslu, Ş Altındal, U Aydemir, İ Dökme and İ M Afandiyeva J. Alloys Compd. 503 96 (2010)

    Article  Google Scholar 

  15. H G Çetinkaya, H Tecimer, H Uslu and Ş Altındal Curr. Appl. Phys. 13 1150 (2013)

    Article  ADS  Google Scholar 

  16. D L Ellis, M R Zakin, L S Bernstein and M F Rubner Anal. Chem. 68 817 (1996)

    Article  Google Scholar 

  17. U Lange, N V Roznyatovskaya and V M Mirsky Anal. Chim. Acta 614 1 (2008)

    Article  Google Scholar 

  18. I F Perepichka, D F Perepichka, H Meng and F Wudl, Adv. Mater. 17 2281 (2005)

    Article  Google Scholar 

  19. H Bai and G Shi Sensors 7 267 (2007)

    Article  Google Scholar 

  20. L Wang, X Wu, X Wang, Q Feng, M Pei and G Zang Des. Monomers Polym. 16 339 (2013)

    Article  Google Scholar 

  21. Y Kim, S Cook, S A Choulis, J Nelson, J R Durrant and D D C Bradley Chem. Mater. 16 4812 (2004)

    Article  Google Scholar 

  22. C Shi, Y Yao, Y Yang and Q Pei J. Am. Chem. Soc. 128 8980 (2006)

    Article  Google Scholar 

  23. M Zhang, X Guo, W Ma, H Ade and J Hou Adv. Mater. 26 5880 (2014)

    Article  Google Scholar 

  24. E H Rhoderick and R H Williams Metal-Semiconductor Contacts, 2nd edn. (Oxford: Clarendon Press) (1988)

    Google Scholar 

  25. E H Nicollian and J R Brews MOS (Metal Oxide Semiconductor) Physics and Technology (New York: Wiley) (1982)

    Google Scholar 

  26. P R S Reddy, V Janardhanam, I Jyothi, S H Yuk, V R Reddy, J C Jeong, S N Lee and C J Choi JSTS J. Semicond. Technol. Sci. 16 664 (2016)

    Article  Google Scholar 

  27. D Dobrescu, A Rusu, F Udrea and L Dobrescu 2001 Int. Semicond. Conf. CAS 2001 Proc. (Cat. No.01TH8547) IEEE p 429–432 (2001)

  28. F Yakuphanoğlu Synth. Met. 160 1551 (2010)

    Article  Google Scholar 

  29. J H Werner and H H Güttler J. Appl. Phys. 69 1522 (1991)

    Article  ADS  Google Scholar 

  30. M Gökçen, T Tunç, Ş Altındal and İ Uslu Mater. Sci. Eng. B177 416 (2012)

    Article  Google Scholar 

  31. P Chattopadhyay and B Ray Chaudhuri Solid. State. Electron. 36 605 (1993)

    Article  ADS  Google Scholar 

  32. S K Cheung and N W Cheung Appl. Phys. Lett. 49 85 (1986)

    Article  ADS  Google Scholar 

  33. H Norde J. Appl. Phys. 50 5052 (1979)

    Article  ADS  Google Scholar 

  34. K E Bohlin J. Appl. Phys. 60 1223 (1986)

    Article  ADS  Google Scholar 

  35. H C Card and E H Rhoderick J. Phys. D: Appl. Phys. 4 1589 (1971)

    Article  ADS  Google Scholar 

  36. A Singh Solid. State. Electron. 28 223 (1985)

    Article  ADS  Google Scholar 

  37. E H Nicollian and A Goetzberger Bell Syst. Tech. J. 46 1055 (1967)

    Article  Google Scholar 

  38. S Demirezen, Ş Altındal and İ Uslu Curr. Appl. Phys. 13 53 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by The Management Unit of Scientific Research Projects of Süleyman Demirel University (SDUBAP) under 3160-YL-12. Each author wishes to thank SDUBAP for contributions. Also, we thank Prof. Dr. Ayşegül ÖKSÜZ for her contribution of the poly (3-substituted thiophene) (P3DMTFT) synthesized in TUBITAK 105T382.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Kökce.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lapa, H.E., Kökce, A., Aldemir, D.A. et al. Effect of illumination on electrical parameters of Au/(P3DMTFT)/n-GaAs Schottky barrier diodes. Indian J Phys 94, 1901–1908 (2020). https://doi.org/10.1007/s12648-019-01644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-019-01644-y

Keywords

PACS Nos.

Navigation