Skip to main content
Log in

Investigation of photovoltaic effect on electric and dielectric properties of Au/n-Si Schottky barrier diodes with nickel (Ni)–zinc (Zn) doped organic interface layer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Photovoltaic effects were tracked on both electric and dielectric properties of Au/(Ni, Zn)-doped polyvinyl alcohol/n-Si Schottky barrier diodes as function of illumination intensity by 50 W steps at 1 MHz and in the voltage interval of (− 4)–(+ 5) V. The measurements indicate that ac electrical conductivity (σ ac ), dielectric constant’s both real and imaginary parts (ε′, ε″), loss tangent (tanδ) and electric modulus (M′, M″) are highly relevant functions of illumination and voltage. The variations in depletion region can be ascribed to the charges at interface and its reordering and restructuring under illumination and electric field but then accumulation region variations can be ascribed to the interfacial layer and series resistance (R s ). The values of εʹʹ and tanδ show a step increase with the increasing voltage for each illumination intensity while the values of ε′ show an anomalous peak (~ 1.4 V). C–V plot shows an intersection behavior at about 2.2 V due to lack of enough free charges in low illumination. The values of σ ac increase with increasing illumination and voltage due to the formation electron–hole pairs. The M″ vs V have two peaks for each illumination intensity and peak value increases with increasing illumination intensity and its positions tend to shift towards low voltage region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Nakhaei, A.J. Bahari, Mater. Sci.: Mater. Electron. 27, 5899 (2016). https://doi.org/10.1007/s10854-016-4508-3

    Google Scholar 

  2. O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, Ş. Altındal, I. Uslu, Compos. Part B (2016). https://doi.org/10.1016/j.compositesb.2016.05.042

    Google Scholar 

  3. M. Akbari, A. Etemadi, F. Firoozeh et al., J. Mater. Sci.: Mater. Electron. 28, 11562. (2017). https://doi.org/10.1007/s10854-017-7102-4

    Google Scholar 

  4. T.J. Kempa, B. Tian, D.R. Kim, J. Hu, X. Zheng, C.M. Lieber, Single and tandem axial p-i-n nanowire photovoltaic devices. Nano Lett. 8, 3456 (2008)

    Article  Google Scholar 

  5. Y. Yokoyama, S. Hattori, C. Yoshikawa, Y. Yasuda, H. Koyama, T. Takato, H. Kobayashi, Novel wet electrospinning system for fabrication of spongiform nanofiber 3-dimensional fabric. Mater. Lett. 63, 754 (2009)

    Article  Google Scholar 

  6. P. Viswanathamurthi, N. Bhattarai, H.Y. Kim, D.R. Lee, The photoluminescence properties of zinc oxide nanofibres prepared by electrospinning. Nanotechnology 15, 320 (2004)

    Article  Google Scholar 

  7. M.R. Karim, H.W. Lee, I.W. Cheong, S.M. Park, W. Oh, J.H. Yeum, Conducting polyaniline-titanium dioxide nanocomposites prepared by inverted emulsion polymerization. Polym. Compos. 3(1), 89 (2010)

    Google Scholar 

  8. T. Ogawa, H. Ozawa, M. Kawao et al., J. Mater. Sci.: Mater. Electron. 18, 939. (2007). https://doi.org/10.1007/s10854-007-9262-0

    Google Scholar 

  9. M. Akbari, A. Aetemady, F. Firoozeh et al., J. Mater. Sci.: Mater. Electron. 28, 10245. (2017). https://doi.org/10.1007/s10854-017-6791-z

    Google Scholar 

  10. O. Çiçek, H.U. Tecimer, S.O. Tan, H. Tecimer, İ. Orak, Ş. Altındal, Compos. Part B (2017). https://doi.org/10.1016/j.compositesb.2017.01.012

    Google Scholar 

  11. A.H. Salama, M. Dawy, A.M.A. Nada, Studies on dielectric properties and AC-conductivity of cellulose polyvinyl alcohol blends. Polym. Plast. Technol. Eng. 43(4), 1067 (2004)

    Article  Google Scholar 

  12. T.A. Hanafy, Dielectric relaxation and alternating-current conductivity of gadolinium-doped poly(vinyl alcohol). J. Appl. Polym. Sci. 108, 2540 (2008)

    Article  Google Scholar 

  13. M.A. Ahmed, M.S. Abo-Ellil, Effect of dopant concentration on the electrical properties of polyvinyl alcohol (PVA). J. Mater. Sci.: Mater. Electron. 9, 391 (1998)

    Google Scholar 

  14. S.O. Tan, H. Tecimer, O. Çiçek, IEEE Trans. Electron Devices (2017). https://doi.org/10.1109/TED.2016.2647380

    Google Scholar 

  15. P.B. Bhargav, V.M. Mohan, A.K. Sharma, V.V.R.N. Rao, Structural and electrical properties of pure and NaBr doped poly (vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. Ionics 13, 441 (2007)

    Article  Google Scholar 

  16. H. Tecimer, A. Türüt, H. Uslu, Ş Altındal, Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs). Sens. Actuators A 199, 194 (2013)

    Article  Google Scholar 

  17. H. Uslu, Ş Altındal, İ Dökme, Illumination effect on electrical characteristics of organic-based Schottky barrier diodes. J. Appl. Phys. 108, 104501 (2010)

    Article  Google Scholar 

  18. H.G. Çetinkaya, H. Tecimer, H. Uslu, Ş Altındal, Photovoltaic characteristics of Au/PVA (Bi-doped)/n-Si Schottky barrier diodes (SBDs) at various temperatures. Curr. Appl. Phys. 13, 1150 (2013)

    Article  Google Scholar 

  19. İ Yücedağ, A. Kaya, Ş Altındal, On the frequency dependent negative dielectric constant behavior in Al/Co-doped (PVC + TCNQ)/p-Si structures. Int. J. Mod. Phys. B 28, 1450153 (2014)

    Article  Google Scholar 

  20. W. Jianlong, W.H. Wenhua, Y. Qian, Immobilization of microbial cells using polyvinyl alcohol (PVA)-polyacrylamide gels. Biotechnol. Techn. 9, 203 (1995)

    Article  Google Scholar 

  21. S. Hyon, W. Cha, Y. Ikada, Preparation of transparent poly(vinyl alcohol) hydrogel. Polym. Bull. 22, 119 (1989)

    Article  Google Scholar 

  22. H.H. Wang, T.W. Shyr, M.S. Hu, The elastic property of polyvinyl alcohol gel with boric acid as a crosslinking agent. J. Appl. Polym. Sci. 74, 3046 (1999)

    Article  Google Scholar 

  23. T. Kanaya, M. Ohkura, K. Kaji, M. Furusaka, M. Misawa, Gelation process of poly(vinyl alcohol) as studied by small-angle neutron and light scattering. Macromolecules 27, 609 (1994)

    Article  Google Scholar 

  24. İ Uslu, H. Daştan, A. Altaş, A. Yayli, O. Atakol, M.L. Aksu, Preparation and characterization of PVA/boron polymer produced by an electrospinning technique. e-Polymers 13 (2007)

  25. H.S. Nalwa, Evaluation of electrical conduction in iodine-doped polypyrrole. J. Mater. Sci. 27, 210 (1992)

    Article  Google Scholar 

  26. N.V. Reddy, V.V.R. Narasimha, Effect of iodine on electrical conduction in cellulose acetate-butyrate polymer films. J. Mater. Sci. Lett. 11, 1036 (1992)

    Article  Google Scholar 

  27. A.K. Sharma, V. Adinarayana, D. Shanthisagar, dc-conduction mechanism in Fe-doped polystyrene films. Mater. Lett. 12, 247 (1991)

    Article  Google Scholar 

  28. C.V.S. Reddy, X. Han, Q. Zhu, L. Mai, W. Chen, Dielectric spectroscopy studies on (PVP + PVA) poly blend film. Microelectron. Eng. 83, 281 (2006)

    Article  Google Scholar 

  29. R.F. Bhajantri, V. Ravindrachary, A. Harisha, C. Ranganathaiah, G.N. Kumaraswamy, Effect of barium chloride doping on PVA microstructure: positron annihilation study. Appl. Phys. A 87, 797 (2007)

    Article  Google Scholar 

  30. R.H. Hodge, T.J. Dastow, G.H. Edward, G.P. Simon, A.J. Hill, Free volume and the mechanism of plasticization in water-swollen poly(vinyl alcohol). Macromolecules 29, 8137 (1996)

    Article  Google Scholar 

  31. A. Shehap, R.A. Abd Allah, A.F. Basha, F.H. Abd El-Kader, Electrical properties of gamma-irradiated, pure, and nickel chloride-doped polyvinyl alcohol films. J. Appl. Polym. Sci. 68, 687 (1998)

    Article  Google Scholar 

  32. A.K. Sharma, C. Ramu, D.C. conductivity and I–V characteristics in Fe-doped cellulose acetate films. Mater. Sci. Eng. B 15(3), 222 (1992)

    Article  Google Scholar 

  33. M.M. Mosaad, Dielectric constant study in copper-poly(vinyl alcohol) mixtures. J. Mater. Sci. Lett. 9(1), 32 (1990)

    Article  Google Scholar 

  34. S.O. Tan, H. Uslu Tecimer, O. Çiçek, H. Tecimer, İ Orak, Ş Altındal, J. Mater. Sci: Mater. Electron. (2016). https://doi.org/10.1007/s10854-016-4843-4

    Google Scholar 

  35. H. Guan, C. Shao, Y. Liu, N. Yu, X. Yang, Fabrication of NiCo2O4 nanofibers by electrospinning. Solid State Commun. 131, 107 (2004)

    Article  Google Scholar 

  36. J. Lee, D. Bhattacharyya, A.J. Easteal, J.B. Metson, Properties of nano-ZnO/poly(vinyl alcohol)/poly(ethylene oxide) composite thin films. Curr. Appl. Phys. 8, 42 (2008)

    Article  Google Scholar 

  37. S.O. Tan, H.U. Tecimer, O. Çiçek, H. Tecimer, Ş. Altındal, J. Mater. Sci.: Mater. Electron. (2017). https://doi.org/10.1007/s10854-016-6147-0

    Google Scholar 

  38. Ş Altındal, T. Tunç, H. Tecimer, İ Yücedağ, Electrical and photovoltaic properties of Au/(Ni, Zn)-doped PVA/n-Si structures in dark and under 250 W illumination level. Mater. Sci. Semicond. Process. 28, 48 (2014)

    Article  Google Scholar 

  39. T. Tunç, S. Altındal, İ Uslu, İ Dökme, H. Uslu, Temperature dependent current–voltage (I-V) characteristics of Au/n-Si(111) Schottky barrier diodes with PVA (Ni, Zn-doped) interfacial layer. Mater. Sci. Semicond. Process. 14, 139 (2011)

    Article  Google Scholar 

  40. İ Dökme, Ş Altındal, T. Tunç, İ Uslu, Temperature dependent electrical and dielectric properties of Au/polyvinyl alcohol (Ni, Zn-doped)/n-Si Schottky diodes. Microelectron. Reliab. 50, 39 (2010)

    Article  Google Scholar 

  41. H. Tecimer, H. Uslu, Z.A. Alahmed, F. Yakuphanoğlu, Ş Altındal, On the frequency and voltage dependence of admittance characteristics of Al/PTCDA/p-Si (MPS) type Schottky barrier diodes (SBDs). Compos. Part B 57, 25 (2014)

    Article  Google Scholar 

  42. A. Kaya, H. Tecimer, O. Vural, I.H. Tasdemir, Ş Altındal, Capacitance/conductance-voltage-frequency characteristics of Au/PVC + TCNQ/p-Si structures in wide frequency range. IEEE Trans. Electron Devices 61, 584 (2014)

    Article  Google Scholar 

  43. A. Kaya, O. Vural, H. Tecimer, S. Demirezen, Ş Altındal, Frequency and voltage dependence of dielectric properties and electric modulus in Au/PVC + TCNQ/p-Si structure at room temperature. Curr. Appl. Phys. 14, 322 (2014)

    Article  Google Scholar 

  44. C.P. Symth, Dielectric Behaviour and Structure. (McGraw-Hill, New York, 1955)

    Google Scholar 

  45. V.V. Daniel, Dielectric Relaxation. (Academic Press, London, 1967)

    Google Scholar 

  46. M.M. Bülbül, Frequency and temperature dependent dielectric properties of Al/Si3N4/p-Si(100) MIS structure. Microelectron. Eng. 84, 124 (2007)

    Article  Google Scholar 

  47. İ Dökme, Ş Altındal, M. Gökcen, Frequency and gate voltage effects on the dielectric properties of Au/SiO2/n-Si structures. Microelectron. Eng. 85, 1910 (2008)

    Article  Google Scholar 

  48. M.M. Bülbül, S. Zeyrek, Frequency dependent capacitance and conductance–voltage characteristics of Al/Si3N4/p-Si(100) MIS diodes. Microelectron. Eng. 83, 2522 (2006)

    Article  Google Scholar 

  49. M. Popescu, I. Bunget, Physics of Solid Dielectrics. (Elsevier, Amsterdam, 1984)

    Google Scholar 

  50. C. Fanggao, G.A. Saunders, E.F. Lambson, R.N. Hampton, G. Carini, G.D. Marco, M. Lanza, J. Appl. Polym. Sci. 34, 425 (1996)

    Article  Google Scholar 

  51. A.S.MdS. Rahman, M.H. Islam, C.A. Hogarth, Int. J. Electron. 62(2), 167 (1987)

    Article  Google Scholar 

  52. S.P. Szu, C.Y. Lin, AC impedance studies of copper doped silica glass. Mater. Chem. Phys. 82, 295 (2003)

    Article  Google Scholar 

  53. E.H. Nicollian, J.R. Brews, MOS Physics and Technology. (Wiley, New York, 1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tecimer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tecimer, H., Tunç, T. & Altındal, Ş. Investigation of photovoltaic effect on electric and dielectric properties of Au/n-Si Schottky barrier diodes with nickel (Ni)–zinc (Zn) doped organic interface layer. J Mater Sci: Mater Electron 29, 3790–3799 (2018). https://doi.org/10.1007/s10854-017-8314-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-8314-3

Navigation